Pregled bibliografske jedinice broj: 564913
Binary weighted essentially non-oscillatory (BWENO) approximation
Binary weighted essentially non-oscillatory (BWENO) approximation // Journal of computational and applied mathematics, 236 (2012), 9; 2431-2451 doi:10.1016/j.cam.2011.12.002 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 564913 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Binary weighted essentially non-oscillatory (BWENO) approximation
Autori
Crnković, Bojan ; Črnjarić-Žic, Nelida
Izvornik
Journal of computational and applied mathematics (0377-0427) 236
(2012), 9;
2431-2451
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
WENO interpolation; WENO reconstruction; WENO schemes; Hyperbolic conservation law; Partial differential equations; Approximation to derivatives
Sažetak
Weighted essentially non-oscillatory (WENO) schemes have been mainly used for solving hyperbolic partial differential equations (PDEs). Such schemes are capable of high order approximation in smooth regions and non-oscillatory sharp resolution of discontinuities. The base of the WENO schemes is a non-oscillatory WENO approximation procedure, which is not necessarily related to PDEs. The typical WENO procedures are WENO interpolation and WENO reconstruction. The WENO algorithm have gained much popularity but the basic idea of approximation did not change much over the years. In this paper, we first briefly review the idea of WENO interpolation and propose a modification of the basic algorithm. New approximation should improve basic characteristics of the approximation and provide a more flexible framework for future applications. New WENO procedure involves a binary tree weighted construction that is based on key ideas of WENO algorithm and we refer to it as to the binary weighted essentially non-oscillatory (BWENO) approximation. New algorithm comes in a rational and a polynomial version. Furthermore, we describe the WENO reconstruction procedure, which is usually involved in the numerical schemes for hyperbolic PDEs, and propose the new reconstruction procedure based on the described BWENO interpolation. The obtained numerical results show that the newly proposed procedures perform very well on the considered test examples.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
069-0693014-3015 - Numeričko modeliranje i optimizacija strujanja fluida (Sopta, Luka, MZOS ) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts