Pregled bibliografske jedinice broj: 563737
Perfect forms and perfect Delaunay
Perfect forms and perfect Delaunay // Ben Gurion University of the Negev
Beersheba, Izrael, 2012. (predavanje, međunarodna recenzija, pp prezentacija, znanstveni)
CROSBI ID: 563737 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Perfect forms and perfect Delaunay
Autori
Dutour Sikirić, Mathieu
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni
Izvornik
Ben Gurion University of the Negev
/ - , 2012
Skup
BGU Seminar on Algebraic Combinatorics
Mjesto i datum
Beersheba, Izrael, 24.11.2012
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
polytopes; lattices; sphere packing problem; sphere covering problem.
Sažetak
A lattice packing is a family of non-overlapping balls whose center belongs to a lattice L. The density of a packing is the fraction of space occupied by them and the lattice packing problem is to find the lattice of maximum density. We will expose the theory of Voronoi for lattice packings, that is the notion of perfect form, Ryshkov polyhedron and Voronoi algorithm that allow to solve the lattice packing problem up to dimension 8. Along the way we will shortly introduce root lattices, the Leech lattice and the well rounded retract. Then we will consider the covering problem where one wants to cover the space by balls whose center belong to a lattice. We will shortly discussthe problem of minimizing the covering density and then we will remark that the root lattice E6 is actually a local maxima for the covering density. This allows us to introduce the Erdahl cone, the notion of perfect Delaunay polytopes and a Voronoi algorithm for their enumeration.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
098-0982705-2707 - Matematičko modeliranje cirkulacije i satelitska detekcija graničnih procesa (Kuzmić, Milivoj, MZOS ) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb
Profili:
Mathieu Dutour Sikirić
(autor)