Pregled bibliografske jedinice broj: 56212
Regularization and validation of neural network models of nonlinear systems
Regularization and validation of neural network models of nonlinear systems // Elektrotechnik und Informationstechnik (e&i), 117 (2000), 1; 24-31 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 56212 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Regularization and validation of neural network models of nonlinear systems
Autori
Petrović, Ivan ; Baotić, Mato ; Perić, Nedjeljko
Izvornik
Elektrotechnik und Informationstechnik (e&i) (0932-383X) 117
(2000), 1;
24-31
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
nonlinear systems; neural networks; regularization techniques; model validation
Sažetak
A characteristic feature of the neural network models is the large number of parameters. A model offering many parameters usually gives rise to problems, and the variance contribution to the modeling error might be very high. Therefore, it is crucial to find the model with the optimal number of parameters. In this paper two techniques of selection of the optimal number of model parameters are described and compared: explicit and implicit regularization techniques. Model validation forms the final stage of an identification procedure with the aim of assessing objectively whether the identified model agrees sufficiently well with the observed data. In this paper the reliability of the correlation-based validation tests and the c2-test is analyzed.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- The INSPEC Science Abstracts series
- ZDEE and ITEC baze na FIZ Frankfurt