Pregled bibliografske jedinice broj: 559901
PRIMITIVE SYMMETRIC DESIGNS HAVING UP TO 2500 POINTS
PRIMITIVE SYMMETRIC DESIGNS HAVING UP TO 2500 POINTS // Combinatorics 2010, Abstracts of Lectures and Talks / Scientific committee of Combinatorics 2010 (ur.).
Milano: Organizing committee of Combinatorics 2010, 2010. str. 232-232 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 559901 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
PRIMITIVE SYMMETRIC DESIGNS HAVING UP TO 2500 POINTS
Autori
Braić, Snježana ; Golemac, Anka ; Mandić, Joško ; Vučičić, Tanja ;
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Combinatorics 2010, Abstracts of Lectures and Talks
/ Scientific committee of Combinatorics 2010 - Milano : Organizing committee of Combinatorics 2010, 2010, 232-232
Skup
COMBINATORICS 2010
Mjesto i datum
Verbania, Italija, 27.06.2010. - 03.07.2010
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Symmetric design; primitive automorphism group; difference set
Sažetak
We present the construction of primitive (v , k , lambda) symmetric designs with v < 2500. Up to a few unsolved cases, the total of 116 designs is obtained and their full automorphism groups are analyzed. The method of construction is based on a design automorphism group (primitive) action. In the case of affine type primitive groups and v = p^m, p prime and m > 1, 60 designs are obtained ; non-existence results include the theory of difference sets and multiplier theorems in particular ([1]). The rest of 56 obtained designs have primitive automorphism groups of almost simple or product type. The research involves programming and wide-range computations. We make use of software package GAP and the library of primitive groups which it contains. References [1] S. Braić, A. Golemac, J. Mandić and T. Vučičić, Primitive Symmetric Designs with Prime Power Number of Points, Journal of Combinatorial Designs 18 (2010), 141-154.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
177-0000000-0882 - Tranzitivne grupe i s njima povezane diskretne strukture (Golemac, Anka, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Split