Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 555100

Predviđanje protein - protein interakcija iz primarne strukture putem "random forest" klasifikatora


Vedran Franke
Predviđanje protein - protein interakcija iz primarne strukture putem "random forest" klasifikatora, 2010., diplomski rad, diplomski, Prirodoslovno - Matematičcki Fakultet, Zagreb


CROSBI ID: 555100 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Predviđanje protein - protein interakcija iz primarne strukture putem "random forest" klasifikatora
(Prediction of protein - protein interactions from primary structure using a random forest classifier)

Autori
Vedran Franke

Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski

Fakultet
Prirodoslovno - Matematičcki Fakultet

Mjesto
Zagreb

Datum
15.10

Godina
2010

Stranica
32

Mentor
Vlahoviček, Kristian

Ključne riječi
interakcije proteina; strojno učenje; random forest; predikcija
(protein interactions; random forest; machine learning; prediction)

Sažetak
The interaction between proteins is fundamental to a broad spectrum of biological functions, including regulation of metabolic pathways, immunological recognition, DNA replication, progression through the cell cycle, and protein synthesis. Due to the growing disparity between the amount of sequenced genomic content and functional data, there exist a pressing need for tools and methods that will enable prediction of phenotypic traits, on the molecular or organism level, based on the sequence alone. In this work we have constructed a high quality dataset of protein structures that has enabled us to use the Random Forest non-linear classificator to develop a method for prediction of interacting residues from the protein primary structure. Our results have shown that, although the Random Forest algorithm has a unique capability of accurately classifying highly dimensional data, we still have an incomplete knowledge of structural factors that determine the specificity of protein-protein interactions, thus putting an upper limit the on the usefulness of the machine learning approach in predicting protein interactions on the level of single amino-acids.

Izvorni jezik
Engleski

Znanstvena područja
Biologija



POVEZANOST RADA


Projekti:
119-0982913-1211 - Računalna genomika mikrobnih okoliša i bioinformatika ekstremofila (Vlahoviček, Kristian, MZOS ) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Kristian Vlahoviček (mentor)

Avatar Url Vedran Franke (autor)


Citiraj ovu publikaciju:

Vedran Franke
Predviđanje protein - protein interakcija iz primarne strukture putem "random forest" klasifikatora, 2010., diplomski rad, diplomski, Prirodoslovno - Matematičcki Fakultet, Zagreb
Vedran Franke (2010) 'Predviđanje protein - protein interakcija iz primarne strukture putem "random forest" klasifikatora', diplomski rad, diplomski, Prirodoslovno - Matematičcki Fakultet, Zagreb.
@phdthesis{phdthesis, year = {2010}, pages = {32}, keywords = {interakcije proteina, strojno u\v{c}enje, random forest, predikcija}, title = {Predvi\djanje protein - protein interakcija iz primarne strukture putem "random forest" klasifikatora}, keyword = {interakcije proteina, strojno u\v{c}enje, random forest, predikcija}, publisherplace = {Zagreb} }
@phdthesis{phdthesis, year = {2010}, pages = {32}, keywords = {protein interactions, random forest, machine learning, prediction}, title = {Prediction of protein - protein interactions from primary structure using a random forest classifier}, keyword = {protein interactions, random forest, machine learning, prediction}, publisherplace = {Zagreb} }




Contrast
Increase Font
Decrease Font
Dyslexic Font