Pregled bibliografske jedinice broj: 554649
Primitive Block Designs with Automorphism Group PSL(2, q)
Primitive Block Designs with Automorphism Group PSL(2, q) // Fq 10 Ghent, The Tenth International Conference on Finite Fields and Their Applications / Scientific committee of Fq 10 (ur.).
Ghent: Local organizing committee of Fq 10, 2011. str. 110-110 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 554649 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Primitive Block Designs with Automorphism Group PSL(2, q)
Autori
Braić, Snježana ; Mandić Joško ; Vučičić Tanja
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Fq 10 Ghent, The Tenth International Conference on Finite Fields and Their Applications
/ Scientific committee of Fq 10 - Ghent : Local organizing committee of Fq 10, 2011, 110-110
Skup
Fq 10 Ghent, The Tenth International Conference on Finite Fields and Their Applications
Mjesto i datum
Gent, Belgija, 11.07.2011. - 15.07.2011
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Symmetric design; automorphism group; primitive group action
Sažetak
A block design we call primitive if it has an automorphism group acting primitively on both point and block set. Taking the projective line X={;∞};∪GF(q) as the set of points, our research aims to determine, up to isomorphism and complementation, all primitive block designs with PSL(2, q) as an automorphism group. The number of such designs we denote by npd(q). In dealing with primitive permutation representations of almost simple groups with socle PSL(2, q) we make use of the study [1] of their maximal subgroups. The obtained designs we describe by their base block (a union of orbits of a block stabilizer) and the full automorphism group. Our results so far include completely solving the problem in case when a block stabilizer is not in the fifth Aschbacher's class (in particular, for q a prime), and assertions such as the following. Lemma 1. Let q>=4. Then npd(q)=0 if and only if q=7, 11, 23 or q=2^r, r a prime. Lemma 2. Let q>=13 and let there exist a block design D, the socle of AutD being PSL(2, q). If the base block stabilizer is in the second Aschbacher's class, then q is congruent to 1(mod4), D is 2-(q+1, (q-1)/2, (q-1)(q-3)/8) design up to complementation, and AutD=PΣL(2, q). [1] M. Giudici, Maximal subgroups of almost simple groups with socle PSL(2, q), arXiv:math/0703685v1 [math.GR], 2007.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
177-0000000-0882 - Tranzitivne grupe i s njima povezane diskretne strukture (Golemac, Anka, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Split