Pregled bibliografske jedinice broj: 552290
Numerical Implementation of the Iterative Rational Krylov Algorithm for Optimal H2 Model Reduction
Numerical Implementation of the Iterative Rational Krylov Algorithm for Optimal H2 Model Reduction // Householder Symposium XVIII on Numerical Linear Algebra / Overton, Michael et. al. (ur.). - Berkeley : Lawrence Berkeley National Laboratory , 2011. 60.
tahoe City, California, Sjedinjene Američke Države, 2011. (poster, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 552290 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Numerical Implementation of the Iterative Rational Krylov Algorithm for Optimal H2 Model Reduction
Autori
Beattie, Christopher ; Drmač, Zlatko ; Gugercin, Serkan
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Householder Symposium XVIII on Numerical Linear Algebra / Overton, Michael et. al. (ur.). - Berkeley : Lawrence Berkeley National Laboratory , 2011. 60.
/ - , 2011
Skup
Householder Symposium XVIII on Numerical Linear Algebra
Mjesto i datum
Tahoe City, California, Sjedinjene Američke Države, 12.06.2011. - 17.06.2011
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
model order reduction; rational Krylov algorithm
Sažetak
The Iterative Rational Krylov (IRKA) algorithm for model order reduction (Gugercin, Antoulas, Beattie 2008.) has recently attracted attention because of its eff ectiveness in real world applications, as well as because of its mathematical elegance. Our goal is efficient and numerically reliable mathematical software that implements the IRKA algorithm. The first step is, necessarily, a theoretical study of the algorithm. We analyze the convergence of fixed point iterations, in particular the morphology of the key mapping ( fixed points, periodic points and their classification). Other theoretical issues include perturbation theory to analyze stability of the shifts, revealing relevant condition numbers, Cauchy{; ; ; like structure of certain key matrices, connection of the fixed point iterations and pole placement, proper stopping criterion that translates into a backward stability relation, etc.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037-0372783-2750 - Spektralne dekompozicije - numericke metode i primjene (Drmač, Zlatko, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Zlatko Drmač
(autor)