Pregled bibliografske jedinice broj: 551028
The optimal power mean bounds for two convex combinations of A-G-H means
The optimal power mean bounds for two convex combinations of A-G-H means // Journal of Mathematical Inequalities, 6 (2012), 1; 33-41 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 551028 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The optimal power mean bounds for two convex combinations of A-G-H means
Autori
Čižmešija, Aleksandra
Izvornik
Journal of Mathematical Inequalities (1846-579X) 6
(2012), 1;
33-41
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
arithmetic mean; geometric mean; harmonic mean; power mean; Heronian mean; sharp inequality
Sažetak
For $p \in \R$, let $M_p(a, b)$ denote the usual power mean of order $p$ of positive real numbers $a$ and $b$, and let $A = M_1$, $G=M_0$ and $H=M_{; ; ; -1}; ; ; $. We prove that the inequalities $M_0(a, b) \leq \frac{; ; ; 1}; ; ; {; ; ; 3}; ; ; [A(a, b) + G(a, b) + H(a, b)] \leq M_{; ; ; \frac{; ; ; \ln 2}; ; ; {; ; ; \ln 6}; ; ; }; ; ; (a, b)$ and $M_{; ; ; -\frac{; ; ; 1}; ; ; {; ; ; 6}; ; ; }; ; ; (a, b) \leq \frac{; ; ; 1}; ; ; {; ; ; 2}; ; ; [He(a, b) + H(a, b)] \leq M_{; ; ; \frac{; ; ; \ln 2}; ; ; {; ; ; \ln 6}; ; ; }; ; ; (a, b)$ hold for all positive real numbers $a$ and $b$, with strict inequality for $a \neq b$, and that the orders of power means involved are optimal.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
058-1170889-1050 - Ocjene za funkcionale na prostorima funkcija (Perić, Ivan, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Aleksandra Čižmešija
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet