Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 548287

Epidemic centrality – identifying “superspreaders” in complex networks


Šikić, Mile; Lančić, Alen; Antulov-Fantulin, Nino; Štefančić, Hrvoje
Epidemic centrality – identifying “superspreaders” in complex networks // Book of Abstracts ECCS'11 Vienna / Thurner, Stefan ; Szell, Michael (ur.).
Beč, 2011. str. 124-125 (poster, nije recenziran, sažetak, znanstveni)


CROSBI ID: 548287 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Epidemic centrality – identifying “superspreaders” in complex networks

Autori
Šikić, Mile ; Lančić, Alen ; Antulov-Fantulin, Nino ; Štefančić, Hrvoje

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Book of Abstracts ECCS'11 Vienna / Thurner, Stefan ; Szell, Michael - Beč, 2011, 124-125

ISBN
978-3-85409-613-9

Skup
European Conference on Complex Systems 2011

Mjesto i datum
Beč, Austrija, 12.09.2011. - 16.09.2011

Vrsta sudjelovanja
Poster

Vrsta recenzije
Nije recenziran

Ključne riječi
complex networks; SIR model; epidemic centrality; epidemiology

Sažetak
In the study of disease spreading on empirical complex networks in SIR model, initially infected nodes can be ranked according to some measure of their epidemic impact. The highest ranked nodes, also referred to as ``superspreaders" are associated to dominant epidemic risks and therefore deserve special attention. In simulations on studied empirical complex networks it is shown that the ranking depends on the dynamical regime of the disease spreading. A possible mechanism leading to this dynamical dependence is illustrated in an analytically tractable example. In systems where the allocation of resources to counter disease spreading to individual nodes is based on their ranking, the dynamical regime of disease spreading is frequently not known before the outbreak of the disease. Therefore we introduce a quantity called {; ; \em epidemic centrality}; ; as an average over all regimes of disease spreading as a basis of the ranking. A recently introduced concept of phase diagram of epidemic spreading is used as a framework in which several types of averaging are studied. The epidemic centrality is compared to structural properties of nodes such as node degree, k-cores and betweenness. There is a growing trend of epidemic centrality with degree and k-cores values, but the variation of epidemic centrality is much smaller than the variation of degree or k-cores value. It is found that the epidemic centrality of the structurally peripheral nodes is of the same order of magnitude as the epidemic centrality of the structurally central nodes. The implications of these findings for the distributions of resources to counter disease spreading are discussed.

Izvorni jezik
Engleski

Znanstvena područja
Fizika, Računarstvo



POVEZANOST RADA


Projekti:
036-0362214-1987 - Modeliranje kompleksnih sustava (Jeren, Branko, MZO ) ( CroRIS)
098-0352828-2863 - Površine i nanostrukture: Teorijski pristupi i numerički proračuni (Šokčević, Damir, MZOS ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Institut "Ruđer Bošković", Zagreb

Citiraj ovu publikaciju:

Šikić, Mile; Lančić, Alen; Antulov-Fantulin, Nino; Štefančić, Hrvoje
Epidemic centrality – identifying “superspreaders” in complex networks // Book of Abstracts ECCS'11 Vienna / Thurner, Stefan ; Szell, Michael (ur.).
Beč, 2011. str. 124-125 (poster, nije recenziran, sažetak, znanstveni)
Šikić, M., Lančić, A., Antulov-Fantulin, N. & Štefančić, H. (2011) Epidemic centrality – identifying “superspreaders” in complex networks. U: Thurner, S. & Szell, M. (ur.)Book of Abstracts ECCS'11 Vienna.
@article{article, author = {\v{S}iki\'{c}, Mile and Lan\v{c}i\'{c}, Alen and Antulov-Fantulin, Nino and \v{S}tefan\v{c}i\'{c}, Hrvoje}, year = {2011}, pages = {124-125}, keywords = {complex networks, SIR model, epidemic centrality, epidemiology}, isbn = {978-3-85409-613-9}, title = {Epidemic centrality – identifying “superspreaders” in complex networks}, keyword = {complex networks, SIR model, epidemic centrality, epidemiology}, publisherplace = {Be\v{c}, Austrija} }
@article{article, author = {\v{S}iki\'{c}, Mile and Lan\v{c}i\'{c}, Alen and Antulov-Fantulin, Nino and \v{S}tefan\v{c}i\'{c}, Hrvoje}, year = {2011}, pages = {124-125}, keywords = {complex networks, SIR model, epidemic centrality, epidemiology}, isbn = {978-3-85409-613-9}, title = {Epidemic centrality – identifying “superspreaders” in complex networks}, keyword = {complex networks, SIR model, epidemic centrality, epidemiology}, publisherplace = {Be\v{c}, Austrija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font