Pregled bibliografske jedinice broj: 545410
Derivation of the nonlinear bending-torsion model for a junction of elastic rods
Derivation of the nonlinear bending-torsion model for a junction of elastic rods // Proceedings of the Royal Society of Edinburgh. Section A, 142 (2012), 3; 633-664 doi:10.1017/S0308210510000491 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 545410 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Derivation of the nonlinear bending-torsion model for a junction of elastic rods
Autori
Tambača, Josip ; Velčić, Igor
Izvornik
Proceedings of the Royal Society of Edinburgh. Section A (0308-2105) 142
(2012), 3;
633-664
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
rods; one-dimensional model; junction; contact conditions
Sažetak
In this paper we derive the one-dimensional bending-torsion equilibrium model modeling the junction of straight rods. The starting point is a three-dimensional nonlinear elasticity equilibrium problem written as a minimization problem for a union of thin rod--like bodies. By taking the limit as the thickness of the 3D rods goes to zero, and by using ideas from the theory of Gamma-convergence, we obtain that the resulting model consists of the union of the usual one--dimensional nonlinear bending-torsion rod models which satisfy the following transmission conditions at the junction point: continuity of displacement and rotation of the cross--sections and balance of contact forces and contact couples.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037-0693014-2765 - Matematička analiza kompozitnih i tankih struktura (Tutek, Zvonimir, MZOS ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts