Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 543109

Estimating the Number of Components of a Multicomponent Nonstationary Signal Using the Short-Term Time-Frequency Renyi Entropy


Sučić, Viktor; Saulig, Nicoletta; Boashash, Boualem
Estimating the Number of Components of a Multicomponent Nonstationary Signal Using the Short-Term Time-Frequency Renyi Entropy // EURASIP Journal on Advances in Signal Processing, 125 (2011), 125-1 doi:10.1186/1687-6180-2011-125 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 543109 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Estimating the Number of Components of a Multicomponent Nonstationary Signal Using the Short-Term Time-Frequency Renyi Entropy

Autori
Sučić, Viktor ; Saulig, Nicoletta ; Boashash, Boualem

Izvornik
EURASIP Journal on Advances in Signal Processing (1687-6172) 125 (2011); 125-1

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Renyi Entropy; Separarable Kernel Time-Frequency Distributions; Components

Sažetak
The time-frequency Renyi entropy provides a measure of complexity of a nonstationary multicomponent signal in the time-frequency plane. When the complexity of a signal corresponds to the number of its components, then this information is measured as the Renyi entropy of the time- frequency distribution of the signal. This paper presents a solution to the problem of detecting the number of components that are present in a short time interval of the signal time-frequency distribution, using the short-term Renyi entropy. The method is automatic and it does not require a prior information about the signal. The algorithm is applied on both synthetic and real data, using a quadratic separable kernel time-frequency distribution (TFD). The results confirm that the short-term Renyi entropy can be an effective tool for estimating the local number of components present in the signal. The key aspect of selecting a suitable TFD is also discussed.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo

Napomena
Special Issue on Advances in Time Frequency and Array Processing of Nonstationary Signals



POVEZANOST RADA


Projekti:
069-0362214-1575 - Optimizacija i dizajn vremensko-frekvencijskih distribucija (Sučić, Viktor, MZOS ) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Viktor Sučić (autor)

Avatar Url Nicoletta Saulig (autor)

Poveznice na cjeloviti tekst rada:

doi asp.eurasipjournals.com

Citiraj ovu publikaciju:

Sučić, Viktor; Saulig, Nicoletta; Boashash, Boualem
Estimating the Number of Components of a Multicomponent Nonstationary Signal Using the Short-Term Time-Frequency Renyi Entropy // EURASIP Journal on Advances in Signal Processing, 125 (2011), 125-1 doi:10.1186/1687-6180-2011-125 (međunarodna recenzija, članak, znanstveni)
Sučić, V., Saulig, N. & Boashash, B. (2011) Estimating the Number of Components of a Multicomponent Nonstationary Signal Using the Short-Term Time-Frequency Renyi Entropy. EURASIP Journal on Advances in Signal Processing, 125, 125-1 doi:10.1186/1687-6180-2011-125.
@article{article, author = {Su\v{c}i\'{c}, Viktor and Saulig, Nicoletta and Boashash, Boualem}, year = {2011}, pages = {125-1-125-11}, DOI = {10.1186/1687-6180-2011-125}, keywords = {Renyi Entropy, Separarable Kernel Time-Frequency Distributions, Components}, journal = {EURASIP Journal on Advances in Signal Processing}, doi = {10.1186/1687-6180-2011-125}, volume = {125}, issn = {1687-6172}, title = {Estimating the Number of Components of a Multicomponent Nonstationary Signal Using the Short-Term Time-Frequency Renyi Entropy}, keyword = {Renyi Entropy, Separarable Kernel Time-Frequency Distributions, Components} }
@article{article, author = {Su\v{c}i\'{c}, Viktor and Saulig, Nicoletta and Boashash, Boualem}, year = {2011}, pages = {125-1-125-11}, DOI = {10.1186/1687-6180-2011-125}, keywords = {Renyi Entropy, Separarable Kernel Time-Frequency Distributions, Components}, journal = {EURASIP Journal on Advances in Signal Processing}, doi = {10.1186/1687-6180-2011-125}, volume = {125}, issn = {1687-6172}, title = {Estimating the Number of Components of a Multicomponent Nonstationary Signal Using the Short-Term Time-Frequency Renyi Entropy}, keyword = {Renyi Entropy, Separarable Kernel Time-Frequency Distributions, Components} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font