Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 53887

Unsupervised ICA neural networks applied to the reticle based optical trackers


Kopriva, Ivica; Szu, Harold;
Unsupervised ICA neural networks applied to the reticle based optical trackers // Proceedings of SPIE - Wavelet Applications VII / Szu, Harold ; Vetterli, Martin ; Campbell, William ; Buss, James ; (ur.).
Bellingham (WA): SPIE, 2000. str. 150-164 (pozvano predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 53887 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Unsupervised ICA neural networks applied to the reticle based optical trackers

Autori
Kopriva, Ivica ; Szu, Harold ;

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of SPIE - Wavelet Applications VII / Szu, Harold ; Vetterli, Martin ; Campbell, William ; Buss, James ; - Bellingham (WA) : SPIE, 2000, 150-164

Skup
AeroSense - Annual International Symposium in Aerospace/Defence Sensing, Simulation, and Controls

Mjesto i datum
Orlando (FL), Sjedinjene Američke Države, 16.04.2000. - 20.04.2000

Vrsta sudjelovanja
Pozvano predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
optical trackers; independent component analysis; unsupervised neural networks

Sažetak
Reticle systems are considered to be the classical approach for estimating the position of a target in a considered field of view and are widely used in IR seekers. Due to the simplicity and low cost, since only a few detectors are used, reticle seekers are still in use and are subject of further research. However, the major disadvantage of reticle trackers has been proven to be sensitivity on the IR countermeasures such as flares and jammers. When redesigned adequately they produce output signals that are linear convolutive combinations of the reticle transmission functions that are considered as the source signals in the context of the Independent Component Analysis (ICA) theory. Each function corresponds with single optical source position. That enables ICA neural network to be applied on the optical tracker output signals giving on its outputs recovered reticle transmission functions. Position of each optical source is obtained by applying appropriate demodulation method on the recovered source signals. The three conditions necessary for the ICA theory to work (statistical independence and non-Gaussianity of the source signals and nonsingularity of the mixing matrix) are shown to be fulfilled in principle for any kind of the reticle geometry.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
036024

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Ivica Kopriva (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Kopriva, Ivica; Szu, Harold;
Unsupervised ICA neural networks applied to the reticle based optical trackers // Proceedings of SPIE - Wavelet Applications VII / Szu, Harold ; Vetterli, Martin ; Campbell, William ; Buss, James ; (ur.).
Bellingham (WA): SPIE, 2000. str. 150-164 (pozvano predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Kopriva, I., Szu, H. & (2000) Unsupervised ICA neural networks applied to the reticle based optical trackers. U: Szu, H., Vetterli, M., Campbell, W., Buss, J. & (ur.)Proceedings of SPIE - Wavelet Applications VII.
@article{article, author = {Kopriva, Ivica and Szu, Harold}, year = {2000}, pages = {150-164}, keywords = {optical trackers, independent component analysis, unsupervised neural networks}, title = {Unsupervised ICA neural networks applied to the reticle based optical trackers}, keyword = {optical trackers, independent component analysis, unsupervised neural networks}, publisher = {SPIE}, publisherplace = {Orlando (FL), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }
@article{article, author = {Kopriva, Ivica and Szu, Harold}, year = {2000}, pages = {150-164}, keywords = {optical trackers, independent component analysis, unsupervised neural networks}, title = {Unsupervised ICA neural networks applied to the reticle based optical trackers}, keyword = {optical trackers, independent component analysis, unsupervised neural networks}, publisher = {SPIE}, publisherplace = {Orlando (FL), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }




Contrast
Increase Font
Decrease Font
Dyslexic Font