Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 536474

A functional limit theorem for partial sums of dependent random variables with infinite variance


Basrak, Bojan; Krizmanić, Danijel; Segers, Johan
A functional limit theorem for partial sums of dependent random variables with infinite variance // Annals of probability, 40 (2012), 5; 2008-2033 doi:10.1214/11-AOP669 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 536474 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A functional limit theorem for partial sums of dependent random variables with infinite variance

Autori
Basrak, Bojan ; Krizmanić, Danijel ; Segers, Johan

Izvornik
Annals of probability (0091-1798) 40 (2012), 5; 2008-2033

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
convergence in distribution ; functional limit theorem ; GARCH ; mixing ; moving average ; partial sum ; point processes ; regular variation ; stable processes ; spectral processes ; stochastic volatility

Sažetak
Under an appropriate regular variation condition, the affinely normalized partial sums of a sequence of independent and identically distributed random variables converges weakly to a non-Gaussian stable random variable. A functional version of this is known to be true as well, the limit process being a stable L´evy process. The main result in the paper is that for a stationary, regularly varying sequence for which clusters of high-threshold excesses can be broken down into asymptotically independent blocks, the properly centered partial sum process still converges to a stable L´evy process. Due to clustering, the L´evy triple of the limit process can be different from the one in the independent case. The convergence takes place in the space of c`adl`ag functions endowed with Skorohod’s M1 topology, the more usual J1 topology being inappropriate as the partial sum processes may exhibit rapid successions of jumps within temporal clusters of large values, collapsing in the limit to a single jump. The result rests on a new limit theorem for point processes which is of independent interest. The theory is applied to moving average processes, squared GARCH(1, 1) processes, and stochastic volatility models.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
MZOS-037-0372790-2800 - Statistička analiza slučajnih modela i primjene (Huzak, Miljenko, MZOS ) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb,
Sveučilište u Rijeci, Fakultet za matematiku

Profili:

Avatar Url Bojan Basrak (autor)

Avatar Url Danijel Krizmanić (autor)

Poveznice na cjeloviti tekst rada:

doi projecteuclid.org projecteuclid.org

Citiraj ovu publikaciju:

Basrak, Bojan; Krizmanić, Danijel; Segers, Johan
A functional limit theorem for partial sums of dependent random variables with infinite variance // Annals of probability, 40 (2012), 5; 2008-2033 doi:10.1214/11-AOP669 (međunarodna recenzija, članak, znanstveni)
Basrak, B., Krizmanić, D. & Segers, J. (2012) A functional limit theorem for partial sums of dependent random variables with infinite variance. Annals of probability, 40 (5), 2008-2033 doi:10.1214/11-AOP669.
@article{article, author = {Basrak, Bojan and Krizmani\'{c}, Danijel and Segers, Johan}, year = {2012}, pages = {2008-2033}, DOI = {10.1214/11-AOP669}, keywords = {convergence in distribution, functional limit theorem, GARCH, mixing, moving average, partial sum, point processes, regular variation, stable processes, spectral processes, stochastic volatility}, journal = {Annals of probability}, doi = {10.1214/11-AOP669}, volume = {40}, number = {5}, issn = {0091-1798}, title = {A functional limit theorem for partial sums of dependent random variables with infinite variance}, keyword = {convergence in distribution, functional limit theorem, GARCH, mixing, moving average, partial sum, point processes, regular variation, stable processes, spectral processes, stochastic volatility} }
@article{article, author = {Basrak, Bojan and Krizmani\'{c}, Danijel and Segers, Johan}, year = {2012}, pages = {2008-2033}, DOI = {10.1214/11-AOP669}, keywords = {convergence in distribution, functional limit theorem, GARCH, mixing, moving average, partial sum, point processes, regular variation, stable processes, spectral processes, stochastic volatility}, journal = {Annals of probability}, doi = {10.1214/11-AOP669}, volume = {40}, number = {5}, issn = {0091-1798}, title = {A functional limit theorem for partial sums of dependent random variables with infinite variance}, keyword = {convergence in distribution, functional limit theorem, GARCH, mixing, moving average, partial sum, point processes, regular variation, stable processes, spectral processes, stochastic volatility} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font