Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 534806

Comparison of Air Travel Demand Forecasting Methods


Škurla Babić, Ružica; Grgurević, Ivan; Majić, Zvonimir
Comparison of Air Travel Demand Forecasting Methods // ICTS 2011: 14th International Conference on Transport Science MARITIME, TRANSPORT AND LOGISTICS SCIENCE, Proceedings / Zanne, Marina ; Bajec, Patricija (ur.).
Portorož: Fakulteta za pomorstvo in promet Univerza v Ljubljani, 2011. (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 534806 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Comparison of Air Travel Demand Forecasting Methods

Autori
Škurla Babić, Ružica ; Grgurević, Ivan ; Majić, Zvonimir

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
ICTS 2011: 14th International Conference on Transport Science MARITIME, TRANSPORT AND LOGISTICS SCIENCE, Proceedings / Zanne, Marina ; Bajec, Patricija - Portorož : Fakulteta za pomorstvo in promet Univerza v Ljubljani, 2011

ISBN
978-961-6044-92-9

Skup
ICTS 2011: 14th International Conference on Transport Science MARITIME, TRANSPORT AND LOGISTICS SCIENCE

Mjesto i datum
Portorož, Slovenija, 27.05.2011

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
airline demand forecasting; airline revenue management; time series forecasting; decomposition methods; smoothing methods; neural network forecasting

Sažetak
Accurate forecasts of future passenger demand are essential to effective revenue management system. The seat inventory control leans on predictions about the bookings to come to optimally allocate aircraft seats among the various booking classes. Forecasting for airline revenue management systems is inherently difficult because of complex nature of air travel demand which is highly stochastic. The problem is further complicated because of usually great number of origin destination pairs, each with its own seasonal and weekly effects, the economic environment and external factors like competition or special events. The paper describes general problem of forecasting airline demand and compares traditional methods of forecasting (moving averages, exponential smoothing, etc.) against neural networks as a forecasting method. All the methods are compared on the basis of standard error measures.

Izvorni jezik
Engleski

Znanstvena područja
Tehnologija prometa i transport



POVEZANOST RADA


Projekti:
135-1352339-3045 - Strategijsko modeliranje razvoja zračnog prometa (Steiner, Sanja, MZOS ) ( CroRIS)

Ustanove:
Fakultet prometnih znanosti, Zagreb

Profili:

Avatar Url Ivan Grgurević (autor)

Avatar Url Ružica Škurla Babić (autor)


Citiraj ovu publikaciju:

Škurla Babić, Ružica; Grgurević, Ivan; Majić, Zvonimir
Comparison of Air Travel Demand Forecasting Methods // ICTS 2011: 14th International Conference on Transport Science MARITIME, TRANSPORT AND LOGISTICS SCIENCE, Proceedings / Zanne, Marina ; Bajec, Patricija (ur.).
Portorož: Fakulteta za pomorstvo in promet Univerza v Ljubljani, 2011. (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Škurla Babić, R., Grgurević, I. & Majić, Z. (2011) Comparison of Air Travel Demand Forecasting Methods. U: Zanne, M. & Bajec, P. (ur.)ICTS 2011: 14th International Conference on Transport Science MARITIME, TRANSPORT AND LOGISTICS SCIENCE, Proceedings.
@article{article, author = {\v{S}kurla Babi\'{c}, Ru\v{z}ica and Grgurevi\'{c}, Ivan and Maji\'{c}, Zvonimir}, year = {2011}, keywords = {airline demand forecasting, airline revenue management, time series forecasting, decomposition methods, smoothing methods, neural network forecasting}, isbn = {978-961-6044-92-9}, title = {Comparison of Air Travel Demand Forecasting Methods}, keyword = {airline demand forecasting, airline revenue management, time series forecasting, decomposition methods, smoothing methods, neural network forecasting}, publisher = {Fakulteta za pomorstvo in promet Univerza v Ljubljani}, publisherplace = {Portoro\v{z}, Slovenija} }
@article{article, author = {\v{S}kurla Babi\'{c}, Ru\v{z}ica and Grgurevi\'{c}, Ivan and Maji\'{c}, Zvonimir}, year = {2011}, keywords = {airline demand forecasting, airline revenue management, time series forecasting, decomposition methods, smoothing methods, neural network forecasting}, isbn = {978-961-6044-92-9}, title = {Comparison of Air Travel Demand Forecasting Methods}, keyword = {airline demand forecasting, airline revenue management, time series forecasting, decomposition methods, smoothing methods, neural network forecasting}, publisher = {Fakulteta za pomorstvo in promet Univerza v Ljubljani}, publisherplace = {Portoro\v{z}, Slovenija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font