Pregled bibliografske jedinice broj: 534806
Comparison of Air Travel Demand Forecasting Methods
Comparison of Air Travel Demand Forecasting Methods // ICTS 2011: 14th International Conference on Transport Science MARITIME, TRANSPORT AND LOGISTICS SCIENCE, Proceedings / Zanne, Marina ; Bajec, Patricija (ur.).
Portorož: Fakulteta za pomorstvo in promet Univerza v Ljubljani, 2011. (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 534806 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Comparison of Air Travel Demand Forecasting Methods
Autori
Škurla Babić, Ružica ; Grgurević, Ivan ; Majić, Zvonimir
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
ICTS 2011: 14th International Conference on Transport Science MARITIME, TRANSPORT AND LOGISTICS SCIENCE, Proceedings
/ Zanne, Marina ; Bajec, Patricija - Portorož : Fakulteta za pomorstvo in promet Univerza v Ljubljani, 2011
ISBN
978-961-6044-92-9
Skup
ICTS 2011: 14th International Conference on Transport Science MARITIME, TRANSPORT AND LOGISTICS SCIENCE
Mjesto i datum
Portorož, Slovenija, 27.05.2011
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
airline demand forecasting; airline revenue management; time series forecasting; decomposition methods; smoothing methods; neural network forecasting
Sažetak
Accurate forecasts of future passenger demand are essential to effective revenue management system. The seat inventory control leans on predictions about the bookings to come to optimally allocate aircraft seats among the various booking classes. Forecasting for airline revenue management systems is inherently difficult because of complex nature of air travel demand which is highly stochastic. The problem is further complicated because of usually great number of origin destination pairs, each with its own seasonal and weekly effects, the economic environment and external factors like competition or special events. The paper describes general problem of forecasting airline demand and compares traditional methods of forecasting (moving averages, exponential smoothing, etc.) against neural networks as a forecasting method. All the methods are compared on the basis of standard error measures.
Izvorni jezik
Engleski
Znanstvena područja
Tehnologija prometa i transport
POVEZANOST RADA
Projekti:
135-1352339-3045 - Strategijsko modeliranje razvoja zračnog prometa (Steiner, Sanja, MZOS ) ( CroRIS)
Ustanove:
Fakultet prometnih znanosti, Zagreb