Pregled bibliografske jedinice broj: 530010
Schur-convexity of the means,
Schur-convexity of the means, // Book of Abstracts, Conference on inequalities and applications ’10 / Páles, Zolt (ur.).
Hajdúszoboszló: Institut of Mathematics University of Debrecen,, 2010. str. 13-13 (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 530010 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Schur-convexity of the means,
Autori
Čuljak, Vera
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Book of Abstracts, Conference on inequalities and applications ’10
/ Páles, Zolt - Hajdúszoboszló : Institut of Mathematics University of Debrecen,, 2010, 13-13
Skup
Conference on inequal- ities and applications '10, CIA'10 Hajduszoboszlo, 19-25. 9. 2010, Hungary,
Mjesto i datum
Debrecen, Mađarska, 19.09.2010. - 25.09.2010
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Schur-covexity ; quasi-arithmetic mean ; the generalized weighted integral quasi-arithmetic mean
Sažetak
The property of Schur-covexity (Schur-concavity) of means is considered and compared with recent results in the literature [1], [4], [2], [3]. A new proof for convexity (concavity) and Schur- covexity (Schur-concavity) of the integral arithmetic mean is done. We established the sufficient conditions such that the generalized quasi-arithmetic mean Mf (k ; x ; y) and the generalized weighted integral quasi-arithmetic mean Mf (p ; k ; x ; y)are Schur-convex (or concave) with respect to (x ; y). The applications for the extended mean values E(r ; s ; x ; y) and weighted power integral meanM[r](p ; k ; x ; y) are pointed out.References [1] N. Elezovic and J. Pecaric, A Note on Schur-convex functions, Rocky Mountain J. of Mathematics, 30 no.3 (2000), 853- 856. [2] H.-N. Shi, S.-H. Wu and F. Qi, An alternative note on Shcur-convexity of the extended mean values, Math. Inequal. Appl.9 no.2(2006), 319-224. [3] G. Toader and J. Sandor, Inequalities for general means, J. Inequal. Pure and Appl. Math.„ 7, no. 1, article 13, (2006). [4] D.E. Wulbert, Favard’s Inequality on Average Values of Convex Functions, Mathematical and Computer Modelling. 37 (2003), 1383-1391.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
117-1170889-0888 - Generalne nejednakosti i primjene (Pečarić, Josip, MZOS ) ( CroRIS)
Ustanove:
Tekstilno-tehnološki fakultet, Zagreb
Profili:
Vera Čuljak
(autor)