Pregled bibliografske jedinice broj: 529472
Automatic CT Image Segmentation of the Lungs with Region Growing Algorithm
Automatic CT Image Segmentation of the Lungs with Region Growing Algorithm // PROCEEDINGS IWSSIP 2011 / Zovko-Cihlar, Branka ; Behlilović, Narcis ; Hadžialić, Mesud (ur.).
Sarajevo: Faculty of Electrical Engineering, University of Sarajevo, 2011. str. 395-400 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 529472 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Automatic CT Image Segmentation of the Lungs with Region Growing Algorithm
Autori
Mešanović, Nihad ; Grgić, Mislav ; Huseinagić, Haris ; Maleš, Matija ; Skejić, Emir ; Smajlović, Muamer
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
PROCEEDINGS IWSSIP 2011
/ Zovko-Cihlar, Branka ; Behlilović, Narcis ; Hadžialić, Mesud - Sarajevo : Faculty of Electrical Engineering, University of Sarajevo, 2011, 395-400
ISBN
978-9958-9966-1-0
Skup
18th International Conference on Systems, Signals and Image Processing, IWSSIP 2011
Mjesto i datum
Sarajevo, Bosna i Hercegovina, 16.06.2011. - 18.06.2011
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Computer Aided Diagnosis; Lung Extraction; Region Growing Algorithm
Sažetak
Computer aided diagnosis of lung CT image has been a revolutionary step in the early diagnosing of lung diseases. The best method of implementing computer aided diagnosis for medical image analysis is first to preprocess the image in order to segment it. The first step in computer aided diagnosis of lung computed tomography patient image is generally to first segment the region of interest, in this case lung, and then analyze separately each area obtained, for a tumor, cancer, node detection or other pathology for diagnosis. This is generally much easier approach, because the area used for setting the right diagnosis, is getting smaller with the process of segmentation, so the radiologist can focus his observation only on specific data inside the specific region. In this paper we proposed lung segmentation technique to accurately segment the lung parenchyma of lung CT images, which can help radiologist in early diagnosing lung diseases, but the algorithm can also be used to early diagnose other benign or malignant pathologies in other organs, such as liver, brain or spine.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
036-0361630-1635 - Upravljanje kvalitetom slike u radiodifuziji digitalnog videosignala (Grgić, Sonja, MZO ) ( CroRIS)
036-0982560-1643 - Inteligentno određivanje značajki slike u sustavima za otkrivanje znanja (Grgić, Mislav, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Mislav Grgić
(autor)