Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 528873

Fault tolerant system in a process measurement system based on the PCA method


Rosković, Andrijana; Grbić, Ratko; Slišković, Dražen
Fault tolerant system in a process measurement system based on the PCA method // MIPRO 2011, Student Papers
Opatija, Hrvatska, 2011. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 528873 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Fault tolerant system in a process measurement system based on the PCA method

Autori
Rosković, Andrijana ; Grbić, Ratko ; Slišković, Dražen

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
MIPRO 2011, Student Papers / - , 2011

Skup
MIPRO 2011 34. International Convention on Information and Communication Technology, Electronics and Microelectronics

Mjesto i datum
Opatija, Hrvatska, 23.05.2011. - 27.05.2011

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
process monitoring; fault detection; fault identification; PCA; contribution plot

Sažetak
Better process control is an important step towards increasing the efficiency of production facility. More complex control systems are introduced which require a more complex process measuring systems. Efficient process control is based upon quality and reliable process variable measurement. Process equipment failure can significantly deteriorate the product quality and even cause production outage, resulting in high additional costs. This paper analyzes automatic fault detection and identification of process measurement equipment or sensors. Different statistical methods can be used for this purpose. PCA based statistical process monitoring algorithms are applied on selected examples. For the purpose of fault detection and identification, the PCA method is used to model the correlation among process variables in the input space. Hotelling's (T2) and Q (SPE) statistics are used for fault detection because they provide an indication of unusual variability within and outside normal workspace. Contribution plots are used for fault identification. This paper also presents the estimation (reconstruction) of the value of faulty sensor process variable, which allows the continuation of the process, although the fault might have occurred. Results of all considered examples are compared and discussed.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Projekti:
165-0361621-2000 - Distribuirano računalno upravljanje u transportu i industrijskim pogonima (Hocenski, Željko, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Profili:

Avatar Url Ratko Grbić (autor)

Avatar Url Dražen Slišković (autor)


Citiraj ovu publikaciju:

Rosković, Andrijana; Grbić, Ratko; Slišković, Dražen
Fault tolerant system in a process measurement system based on the PCA method // MIPRO 2011, Student Papers
Opatija, Hrvatska, 2011. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Rosković, A., Grbić, R. & Slišković, D. (2011) Fault tolerant system in a process measurement system based on the PCA method. U: MIPRO 2011, Student Papers.
@article{article, author = {Roskovi\'{c}, Andrijana and Grbi\'{c}, Ratko and Sli\v{s}kovi\'{c}, Dra\v{z}en}, year = {2011}, keywords = {process monitoring, fault detection, fault identification, PCA, contribution plot}, title = {Fault tolerant system in a process measurement system based on the PCA method}, keyword = {process monitoring, fault detection, fault identification, PCA, contribution plot}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {Roskovi\'{c}, Andrijana and Grbi\'{c}, Ratko and Sli\v{s}kovi\'{c}, Dra\v{z}en}, year = {2011}, keywords = {process monitoring, fault detection, fault identification, PCA, contribution plot}, title = {Fault tolerant system in a process measurement system based on the PCA method}, keyword = {process monitoring, fault detection, fault identification, PCA, contribution plot}, publisherplace = {Opatija, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font