Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 528677

Variable Degree Polynomial Splines are Chebyshev Splines


Bosner, Tina; Rogina, Mladen
Variable Degree Polynomial Splines are Chebyshev Splines // Advances in computational mathematics, 38 (2013), 2; 383-400 doi:10.1007/s10444-011-9242-z (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 528677 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Variable Degree Polynomial Splines are Chebyshev Splines

Autori
Bosner, Tina ; Rogina, Mladen

Izvornik
Advances in computational mathematics (1019-7168) 38 (2013), 2; 383-400

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Chebyshev splines ; Total positivity ; Variation diminishing ; Marsden identity ; Recurrence relations

Sažetak
Variable degree polynomial (VDP) splines have recently proved themselves as a valuable tool in obtaining shape preserving approximations. However, some usual properties which one would expect of a spline space in order to be useful in geometric modeling, do not follow easily from their definition. This includes total positivity (TP) and variation diminishing, but also constructive algorithms based on knot insertion. We consider variable degree polynomial splines of order $k\geqslant 2$ spanned by $\{; ; ; ; 1, x, \ldots x^{; ; ; ; k-3}; ; ; ; , (x-x_i)^{; ; ; ; m_i-1}; ; ; ; , (x_{; ; ; ; i+1}; ; ; ; -x)^{; ; ; ; n_i-1}; ; ; ; \}; ; ; ; $ on each subinterval $[x_i, x_{; ; ; ; i+1}; ; ; ; \rangle\subset [0, 1]$, $i=0, 1, \dots l$. Most of the paper deals with non-polynomial case $m_i, n_i \in [4, \infty)$, and polynomial splines known as VDP--splines are the special case when $m_i$, $n_i$ are integers. We describe VDP--splines as being piecewisely spanned by a Canonical Complete Chebyshev system of functions whose measure vector is determined by positive rational functions $p(x)$, $q(x)$. These functions are such that variable degree splines belong piecewisely to the kernel of the differential operator ${; ; ; ; d \over{; ; ; ; dx}; ; ; ; }; ; ; ; p {; ; ; ; d \over{; ; ; ; dx}; ; ; ; }; ; ; ; q {; ; ; ; d^{; ; ; ; k-2}; ; ; ; \over{; ; ; ; dx^{; ; ; ; k-2}; ; ; ; }; ; ; ; }; ; ; ; $. Although the space of splines is not based on an Extended Chebyshev system, we argue that total positivity and variation diminishing still holds. Unlike the abstract results, constructive properties, like Marsden identity, recurrences for quasi-Bernstein polynomials and knot insertion algorithms may be more involved and we prove them only for VDP splines of orders $4$ and $5$.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
MZOS-037-1193086-2771 - Numeričke metode u geofizičkim modelima (Singer, Saša, MZOS ) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Tina Bosner (autor)

Avatar Url Mladen Rogina (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com rd.springer.com doi.org

Citiraj ovu publikaciju:

Bosner, Tina; Rogina, Mladen
Variable Degree Polynomial Splines are Chebyshev Splines // Advances in computational mathematics, 38 (2013), 2; 383-400 doi:10.1007/s10444-011-9242-z (međunarodna recenzija, članak, znanstveni)
Bosner, T. & Rogina, M. (2013) Variable Degree Polynomial Splines are Chebyshev Splines. Advances in computational mathematics, 38 (2), 383-400 doi:10.1007/s10444-011-9242-z.
@article{article, author = {Bosner, Tina and Rogina, Mladen}, year = {2013}, pages = {383-400}, DOI = {10.1007/s10444-011-9242-z}, keywords = {Chebyshev splines, Total positivity, Variation diminishing, Marsden identity, Recurrence relations}, journal = {Advances in computational mathematics}, doi = {10.1007/s10444-011-9242-z}, volume = {38}, number = {2}, issn = {1019-7168}, title = {Variable Degree Polynomial Splines are Chebyshev Splines}, keyword = {Chebyshev splines, Total positivity, Variation diminishing, Marsden identity, Recurrence relations} }
@article{article, author = {Bosner, Tina and Rogina, Mladen}, year = {2013}, pages = {383-400}, DOI = {10.1007/s10444-011-9242-z}, keywords = {Chebyshev splines, Total positivity, Variation diminishing, Marsden identity, Recurrence relations}, journal = {Advances in computational mathematics}, doi = {10.1007/s10444-011-9242-z}, volume = {38}, number = {2}, issn = {1019-7168}, title = {Variable Degree Polynomial Splines are Chebyshev Splines}, keyword = {Chebyshev splines, Total positivity, Variation diminishing, Marsden identity, Recurrence relations} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • INSPEC
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font