Pregled bibliografske jedinice broj: 526477
Exceptional dual pair correspondences
Exceptional dual pair correspondences, 2006., doktorska disertacija, University of Utah, Salt Lake City
CROSBI ID: 526477 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Exceptional dual pair correspondences
Autori
Kovačević, Domagoj
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, doktorska disertacija
Fakultet
University of Utah
Mjesto
Salt Lake City
Datum
07.12
Godina
2006
Stranica
49
Mentor
Savin, Gordan
Ključne riječi
dual pair correspondence; real form
Sažetak
Dual pair in a Lie algebra g is a pair of subalgebras g1×g2 such that Zg(gi) = gj. The restriction of a representation pi of g is a sum of representations of g1×g2. It gives a correspondence of representations of g1 and g2. In the first part of this thesis we describe real forms of dual pairs gC2×h in g of type En. In the second part, we give a new construction of an (eC6, SL(3, C)×SL(3, C)×SL(3, C))-modules annihilated by the Joseph ideal. Using this construction, we construct a correspondence between PGL(3, C)-modules and (gC2, SL(3, C))-modules. In the last part, we sketch a classification of (gC2, SL(3, C))-modules which is needed in the second part. We give a classification of SL(3, C)-orbits on G2/B. This is the main ingredient for the classification of (gC2, SL(3, C))-modules.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Domagoj Kovačević
(autor)