Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 525717

Accelerometer-Based Gesture Classification Using Principal Component Analysis


Marasović, Tea; Papić, Vladan
Accelerometer-Based Gesture Classification Using Principal Component Analysis // Proceedings of SoftCOM 2011
Dubrovnik, Hrvatska; Hvar, Hrvatska; Split, Hrvatska, 2011. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 525717 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Accelerometer-Based Gesture Classification Using Principal Component Analysis

Autori
Marasović, Tea ; Papić, Vladan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of SoftCOM 2011 / - , 2011

ISBN
978-953-290-027-9

Skup
19th International Conference on Software, Telecommunications and Computer Networks (SoftCOM 2011)

Mjesto i datum
Dubrovnik, Hrvatska; Hvar, Hrvatska; Split, Hrvatska, 15.09.2011. - 17.09.2011

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
accelerometer; gesture recognition; principal component analysis

Sažetak
Gestures, such as a wave or a nod, are commonly used in daily lives. While gestures are most often used just as a support for our verbal communication, they can also be used as a sole, simple and effective way of communication. Recent developments in sensor technology, that have reduced the costs of small and precise sensors and allowed them to be built in a growing number of everyday devices, have also made it possible to explore and experiment with new modalities of communication in the area of human computer interaction. In the case of mobile devices, gesture-based interaction can be helpful for overcoming the physical size limitations, which make the usage of such devices particularly tedious. In this paper we propose a system that uses the accelerometer, embedded in a mobile phone, to capture simple gestures, such as hand describing a circle, thus allowing the user to draw or even write in the air. The principle component analysis is used for feature selection and dimensionality reduction in gesture classification. Experimental results are presented to demonstrate the efficiency of the proposed method.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Projekti:
023-0232006-1662 - Računalni vid u identifikaciji kinematike sportskih aktivnosti (Papić, Vladan, MZOS ) ( CroRIS)
177-0232006-1662 - Računalni vid u identifikaciji kinematike sportskih aktivnosti

Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Profili:

Avatar Url Vladan Papić (autor)

Avatar Url Tea Marasović (autor)


Citiraj ovu publikaciju:

Marasović, Tea; Papić, Vladan
Accelerometer-Based Gesture Classification Using Principal Component Analysis // Proceedings of SoftCOM 2011
Dubrovnik, Hrvatska; Hvar, Hrvatska; Split, Hrvatska, 2011. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Marasović, T. & Papić, V. (2011) Accelerometer-Based Gesture Classification Using Principal Component Analysis. U: Proceedings of SoftCOM 2011.
@article{article, author = {Marasovi\'{c}, Tea and Papi\'{c}, Vladan}, year = {2011}, keywords = {accelerometer, gesture recognition, principal component analysis}, isbn = {978-953-290-027-9}, title = {Accelerometer-Based Gesture Classification Using Principal Component Analysis}, keyword = {accelerometer, gesture recognition, principal component analysis}, publisherplace = {Dubrovnik, Hrvatska; Hvar, Hrvatska; Split, Hrvatska} }
@article{article, author = {Marasovi\'{c}, Tea and Papi\'{c}, Vladan}, year = {2011}, keywords = {accelerometer, gesture recognition, principal component analysis}, isbn = {978-953-290-027-9}, title = {Accelerometer-Based Gesture Classification Using Principal Component Analysis}, keyword = {accelerometer, gesture recognition, principal component analysis}, publisherplace = {Dubrovnik, Hrvatska; Hvar, Hrvatska; Split, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font