Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 524314

Schinzel's problem: Imprimitive covers and the monodromy method


Fried, Michael D.; Gusić, Ivica
Schinzel's problem: Imprimitive covers and the monodromy method // Acta Arithmetica, 155 (2012), 1; 27-40 doi:10.4064/aa155-1-3 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 524314 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Schinzel's problem: Imprimitive covers and the monodromy method

Autori
Fried, Michael D. ; Gusić, Ivica

Izvornik
Acta Arithmetica (0065-1036) 155 (2012), 1; 27-40

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Davenport's Problem; Schinzel's Problem; factorization of variables separated polynomials; Riemann's Existence Theorem; wreath products; imprimitive groups

Sažetak
Schinzel's original problem was to describe when an expression f(x)-g(y), with f, g nonconstant and having complex coefficients, is reducible. We call such an (f, g) a Schinzel pair if this happens nontrivially: f(x)-g(y) is newly reducible. Fried accomplished this when f is indecomposable. That work featured using primitive permutation representations. Even after 42 years going beyond using primitivity is a challenge to the monodromy method despite many intervening related papers. Here we develop a formula for branch cycles that characterizes Schinzel pairs satisfying a condition of Avanzi, Gusic and Zannier and relate it to this ongoing story.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
037-0372781-2821 - Diofantske jednadžbe i eliptičke krivulje (Dujella, Andrej, MZOS ) ( CroRIS)

Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb

Profili:

Avatar Url Ivica Gusić (autor)

Poveznice na cjeloviti tekst rada:

doi journals.impan.gov.pl

Citiraj ovu publikaciju:

Fried, Michael D.; Gusić, Ivica
Schinzel's problem: Imprimitive covers and the monodromy method // Acta Arithmetica, 155 (2012), 1; 27-40 doi:10.4064/aa155-1-3 (međunarodna recenzija, članak, znanstveni)
Fried, M. & Gusić, I. (2012) Schinzel's problem: Imprimitive covers and the monodromy method. Acta Arithmetica, 155 (1), 27-40 doi:10.4064/aa155-1-3.
@article{article, author = {Fried, Michael D. and Gusi\'{c}, Ivica}, year = {2012}, pages = {27-40}, DOI = {10.4064/aa155-1-3}, keywords = {Davenport's Problem, Schinzel's Problem, factorization of variables separated polynomials, Riemann's Existence Theorem, wreath products, imprimitive groups}, journal = {Acta Arithmetica}, doi = {10.4064/aa155-1-3}, volume = {155}, number = {1}, issn = {0065-1036}, title = {Schinzel's problem: Imprimitive covers and the monodromy method}, keyword = {Davenport's Problem, Schinzel's Problem, factorization of variables separated polynomials, Riemann's Existence Theorem, wreath products, imprimitive groups} }
@article{article, author = {Fried, Michael D. and Gusi\'{c}, Ivica}, year = {2012}, pages = {27-40}, DOI = {10.4064/aa155-1-3}, keywords = {Davenport's Problem, Schinzel's Problem, factorization of variables separated polynomials, Riemann's Existence Theorem, wreath products, imprimitive groups}, journal = {Acta Arithmetica}, doi = {10.4064/aa155-1-3}, volume = {155}, number = {1}, issn = {0065-1036}, title = {Schinzel's problem: Imprimitive covers and the monodromy method}, keyword = {Davenport's Problem, Schinzel's Problem, factorization of variables separated polynomials, Riemann's Existence Theorem, wreath products, imprimitive groups} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font