Pregled bibliografske jedinice broj: 518984
Optical Character Recognition of Seven–segment Display Digits Using Neural Networks
Optical Character Recognition of Seven–segment Display Digits Using Neural Networks // 32st International Convention on Information and Communication Technology, Electronics and Microelectronics, Proceedings Vol. V Student Papers / Čišić, Dragan ; Hutinski, Željko ; Baranović, Mirta ; Mauher, Mladen ; Dragšić, Veljko (ur.).
Zagreb: Denona, 2009. str. 323-328 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 518984 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Optical Character Recognition of Seven–segment Display Digits Using Neural Networks
Autori
Bonačić, Ines ; Herman, Tomislav ; Krznar, Tomislav ; Mangić, Edin ; Molnar, Goran ; Čupić, Marko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
32st International Convention on Information and Communication Technology, Electronics and Microelectronics, Proceedings Vol. V Student Papers
/ Čišić, Dragan ; Hutinski, Željko ; Baranović, Mirta ; Mauher, Mladen ; Dragšić, Veljko - Zagreb : Denona, 2009, 323-328
Skup
32st International Convention on Information and Communication Technology, Electronics and Microelectronics
Mjesto i datum
Opatija, Hrvatska, 25.05.2009. - 29.05.2009
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
student identifier recognizion ; 7-segment recognition
Sažetak
In this work, we present a neural networks committee for optical character recognition of seven-segment display digits. The aforementioned digit writing convention restricts the general handwriting recognition problem into a task that can be tackled using an automated approach. Numerous practical applications are available for this type of digit recognition: various forms, written exams etc. We consider three different digit recognition techniques. An appropriate feed-forward neural network is devised for each technique. We use two different methods to determine the optimal topology of neural networks: (1) a traditional, manual approach, and (2) automated topology optimizing system, based on the genetic algorithm. To further improve the performance, a committee of neural networks is developed. In this paper, we elaborate the early results of the character recognition system, based on the devised neural networks committee.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb