Pregled bibliografske jedinice broj: 518932
Cardinality Constrained Portfolio Optimization by Means of Genetic Algorithms
Cardinality Constrained Portfolio Optimization by Means of Genetic Algorithms // Proceedings of 20th International Central European Conference on Information and Intelligent Systems / Aurer, Boris ; Bača, Miroslav ; Rabuzin, Kornelije (ur.).
Varaždin: Fakultet organizacije i informatike Sveučilišta u Zagrebu, 2009. str. 225-231 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 518932 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Cardinality Constrained Portfolio Optimization by Means of Genetic Algorithms
Autori
Martinjak, Ivica
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of 20th International Central European Conference on Information and Intelligent Systems
/ Aurer, Boris ; Bača, Miroslav ; Rabuzin, Kornelije - Varaždin : Fakultet organizacije i informatike Sveučilišta u Zagrebu, 2009, 225-231
Skup
Central European Conference on Information and Intelligent Systems
Mjesto i datum
Varaždin, Hrvatska, 23.09.2009. - 25.09.2009
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
portfolio optimization; rational investor; efficient frontier; heuristic algorithm; genetic algorithm
Sažetak
When applying the standard Markowitz mean-variance model on a real portfolio selection problem, we are faced with certain limitations like cardinality of chosen assets, discrete nature of trading variables etc. While the classical mean-variance model can be successfully solved by standard algorithms (quadratic programming), modelling an actual investment leads to NP-hard optimization problem. In such circumstances heuristic methods appear as the only way out. This paper aims at finding efficient evolutionary inspired algorithm for cardinality constrained portfolio optimization. Among developed algorithms which were able to solve problems with very many possible assets, the algorithm with hybrid crossover presents itself as the most effective. In order to make obtained results comparable, test sample was chosen from databases that serve as a benchmark for this problem class.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Računarstvo, Ekonomija
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Ivica Martinjak
(autor)