Pregled bibliografske jedinice broj: 516641
Integral and computational representations of the extended Hurwitz-Lerch Zeta function
Integral and computational representations of the extended Hurwitz-Lerch Zeta function // Integral transforms and special functions, 22 (2011), 7; 487-506 doi:10.180/10652469.2010.530128 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 516641 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Integral and computational representations of the extended Hurwitz-Lerch Zeta function
Autori
Srivastava, Hari M ; Saxena, Ram K. ; Poganj, Tibor ; Saxena, Ravi
Izvornik
Integral transforms and special functions (1065-2469) 22
(2011), 7;
487-506
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Riemann zeta function ; Lerch zeta function ; polylogarithmic function ; general Hurwitz–Lerch zeta function ; gauss hypergeometric function ; Fox–Wright Psi-function ; H-function ; Mittag–Leffler type functions ; Mellin–Barnes type integral representations ; analytic continuation
Sažetak
This article presents a systematic investigation of various integrals and computational represen-tations for some families of generalized Hurwitz–Lerch Zeta functions which are introduced here.We first establish their relationship with the H-function, which enables us to derive the Mellin–Barnes type integral representations for nearly all of the generalized and specialized Hurwitz–Lerch Zeta functions. The integral expressions studied in this paper provide extensions of the corresponding results given by many authors, including (for example) Garg et al. [A further study of general Hurwitz-Lerch zeta function, Algebras Groups Geom. 25 (2008), pp. 311–319] and Lin and Srivastava [Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput. 154 (2004), pp. 725–733]. We also derive a further analytic continuation formula which provides an elegant extension of the well-known analytic continuation formula for the Gauss hypergeometric function. Fractional derivatives associated with the generalized Hurwitz–Lerch Zeta functions are obtained. The relationship between the generalized Hurwitz–Lerch Zeta function and the H-function, which was given by Garg et al., is seen to be erroneous and we give its corrected version here. Finally, a unification and extension of the Hurwitz–Lerch Zeta function, introduced in this article, is presented and two of its interesting special cases associated with the Mittag–Leffler type functions due to Barnes [The asymptotic expansion of integral functions defined by Taylor series, Philos. Trans. Roy. Soc. London Ser.A 206 (1906), pp. 249–297] and the generalized M-series considered recently by Sharma and Jain [A note on a generalized M-series as a special function of fractional calculus, Fract. Calc. Appl. Anal. 12 (2009), pp. 449–452.] are deduced.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
112-1121722-3314 - Informacijsko-komunikacijske tehnologije u inteligentnim pomorskim sustavima (Tomas, Vinko, MZOS ) ( CroRIS)
Ustanove:
Pomorski fakultet, Rijeka
Profili:
Tibor Poganj
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts
- Referativnij Zhurnal Matematika