Pregled bibliografske jedinice broj: 514465
Circular Surfaces - Mathematica Visualizations
Circular Surfaces - Mathematica Visualizations // MatePollak2011 / Terezia P. Vendel (ur.).
Pečuh: Organising Committiee of the Conference, 2011. str. 19-19 (plenarno, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 514465 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Circular Surfaces - Mathematica Visualizations
Autori
Gorjanc, Sonja
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
MatePollak2011
/ Terezia P. Vendel - Pečuh : Organising Committiee of the Conference, 2011, 19-19
Skup
Mathematics in Architecture and Civil Engineering Desing and Education
Mjesto i datum
Pečuh, Mađarska, 26.05.2011. - 28.05.2011
Vrsta sudjelovanja
Plenarno
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
circular surfaces; congruence of circles
Sažetak
This lecture introduces a new concept of surface-construction: We consider a congruence of circles C(P1, P2)= C(p) in the Euclidean space, i.e. a two-parametric set of circles passing through the points P1, P2 given by the coordinates (0, 0, p), where p=√q, qR. It is a normal curve congruence with singular points on the axis z. C(p) is an elliptic, parabolic or hyperbolic congruence, if q is greater, equal or less then 0, respectively. For a piecewise-differentiable curve : IR3, IR, we define a circular surface CS(, p) as the system of circles of C(p) which cut the curve For the surfaces CS(, p) we derive parametric equations which enable their visualizations in the program Mathematica and investigate their properties if is an algebraic curve.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
082-0000000-0893 - Krivulje i plohe u euklidskom i neeuklidskim prostorima
Ustanove:
Građevinski fakultet, Zagreb
Profili:
Sonja Gorjanc
(autor)