Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 514121

A Comparison of MLP and RBF Neural Networks Architectures for Electromagnetic Field Prediction in Indoor Environments


Vilović, Ivan; Burum, Nikša
A Comparison of MLP and RBF Neural Networks Architectures for Electromagnetic Field Prediction in Indoor Environments // Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP 2011) / Mario Orefice (ur.).
Rim: EUCAP 2011, 2011. str. 1830-1834 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 514121 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A Comparison of MLP and RBF Neural Networks Architectures for Electromagnetic Field Prediction in Indoor Environments

Autori
Vilović, Ivan ; Burum, Nikša

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP 2011) / Mario Orefice - Rim : EUCAP 2011, 2011, 1830-1834

ISBN
978-88-8202-074-3

Skup
The 5th European Conference on Antennas and Propagation (EUCAP)

Mjesto i datum
Rim, Italija, 10.04.2011. - 15.04.2011

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Neural network; Multilayer perceptron; Radial basis function; Particle Swarm Optimization - PSO

Sažetak
In this paper two different neural network architectures are investigated for enough accurate field strength prediction in the complex indoor environment. The investigation includes multilayer perceptron (MLP) and radial basis function (RBF) neural networks. It has been already shown for neural networks as powerful tool in RF propagation prediction. Standard empirical or deterministic field prediction methods are difficult applicable in the case of complex indoor environments, so the neural networks can be the reasonable choice. The neural network models are trained with measured values of the field strength at arbitrary points. The backpropagation training algorithm (Levenberg-Marquardt with Bayesian regularization) is compared with particle swarm optimization (PSO) algorithm used in neural network training. After careful tuning training algorithm parameters the results showed smaller RMS errors for the PSO training case compared with backpropagation algorithm. Also, the better results are abstained by the RBF network architecture.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
036-0361566-1570 - Elektromagnetski učinci i strukture u komunikacijskim sustavima (Šipuš, Zvonimir, MZO ) ( CroRIS)
275-0361566-3136
275-0000000-3260 - Integralna kvaliteta usluge komunikacijskih i informacijskih sustava (Lipovac, Vladimir, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Sveučilište u Dubrovniku

Profili:

Avatar Url Ivan Vilović (autor)


Citiraj ovu publikaciju:

Vilović, Ivan; Burum, Nikša
A Comparison of MLP and RBF Neural Networks Architectures for Electromagnetic Field Prediction in Indoor Environments // Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP 2011) / Mario Orefice (ur.).
Rim: EUCAP 2011, 2011. str. 1830-1834 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Vilović, I. & Burum, N. (2011) A Comparison of MLP and RBF Neural Networks Architectures for Electromagnetic Field Prediction in Indoor Environments. U: Mario Orefice (ur.)Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP 2011).
@article{article, author = {Vilovi\'{c}, Ivan and Burum, Nik\v{s}a}, year = {2011}, pages = {1830-1834}, keywords = {Neural network, Multilayer perceptron, Radial basis function, Particle Swarm Optimization - PSO}, isbn = {978-88-8202-074-3}, title = {A Comparison of MLP and RBF Neural Networks Architectures for Electromagnetic Field Prediction in Indoor Environments}, keyword = {Neural network, Multilayer perceptron, Radial basis function, Particle Swarm Optimization - PSO}, publisher = {EUCAP 2011}, publisherplace = {Rim, Italija} }
@article{article, author = {Vilovi\'{c}, Ivan and Burum, Nik\v{s}a}, year = {2011}, pages = {1830-1834}, keywords = {Neural network, Multilayer perceptron, Radial basis function, Particle Swarm Optimization - PSO}, isbn = {978-88-8202-074-3}, title = {A Comparison of MLP and RBF Neural Networks Architectures for Electromagnetic Field Prediction in Indoor Environments}, keyword = {Neural network, Multilayer perceptron, Radial basis function, Particle Swarm Optimization - PSO}, publisher = {EUCAP 2011}, publisherplace = {Rim, Italija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font