Pregled bibliografske jedinice broj: 508436
On mixed AR(1) time series model with approximated beta marginal
On mixed AR(1) time series model with approximated beta marginal // Statistics & probability letters, 80 (2010), 19/20; 1551-1558 doi:10.1016/j.spl.2010.06.009 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 508436 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On mixed AR(1) time series model with approximated beta marginal
Autori
Popović, Božidar ; Poganj, Tibor ; Nadarajah, Saralees
Izvornik
Statistics & probability letters (0167-7152) 80
(2010), 19/20;
1551-1558
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Mixed AR(1) model; Power law distribution; Two parameter beta distribution; Kumaraswamy distribution; Kummer function of the first kind; Wright function
Sažetak
We consider the mixed AR(1) time series model $X_t$, when $X_t$ has the two-parameter beta distribution $B_2(p, q), p\in (0, 1], q>1$. Special attention is given to the case $p=1$ when the marginal distribution is approximated by the power law distribution closely connected with the two parameter Kumaraswamy distribution . Using the Laplace transform technique, we prove that for $p=1$ the distribution of the innovation process is uniform discrete. For $p\in (0, 1)$, the innovation process has a continuous distri-bution. We also consider estimation issues of the model.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Tehnologija prometa i transport
POVEZANOST RADA
Projekti:
112-2352818-2814 - Redovi uzorkovanja, Mathieuovi redovi i specijalne funkcije
112-1121722-3314 - Informacijsko-komunikacijske tehnologije u inteligentnim pomorskim sustavima (Tomas, Vinko, MZOS ) ( CroRIS)
Ustanove:
Pomorski fakultet, Rijeka
Profili:
Tibor Poganj
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts
- Referativnij Zhurnal Matematika