Pregled bibliografske jedinice broj: 5067
A remark on Hölder's inequality for commuting matrices,
A remark on Hölder's inequality for commuting matrices, // Southeast Asian bulletin of mathematics, 20 (1996), 1; 19-21 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 5067 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A remark on Hölder's inequality for commuting matrices,
Autori
Mond, Bertram ; Pečarić, Josip ;
Izvornik
Southeast Asian bulletin of mathematics (0218-0006) 20
(1996), 1;
19-21
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Hermitian matrix; positive definite matrix; eigenvalue
Sažetak
Let $A$ and $B$ be commuting $n imes n$ matrices over the field of
complex numbers which are Hermitian and positive definite.
Let $lambda_1 geq lambda_2 geq ldots lambda_n$ be the eigenvalues
of $A$ each appearing as many times as its
multiplicity, and, similary, let $mu_1geq mu_2 geq ldots mu_n$ be
the eigenvalues of $B$. Assume that $lambda_1mu_1>lambda_nmu_n$.
Let $p>1$ and $q$ be real numbers with $1/p+1/q=1$. Set
$gamma=(lambda_1/lambda_n)^{1/q}(mu_1/mu_n)^{1/p}$. Then for any non-zero
$n$-dimensional vector $x$ holds
$$ 1leq frac{(A^px,x)^{1/p}(B^qx,x)^{1/q}}{(Ax,Bx)}leq
(frac{q}{p+q} frac{gamma^p-gamma^{-q}}{1-gamma^{-q}})^{1/p}
(frac{p}{p+q} frac{gamma^p-gamma^{-q}}{gamma^{p}-1})^{1/q}.$$
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews
- Mathematical Reviews