Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 50492

Spatio-temporal image segmentation using optical flow and clustering algorithm


Galić, Saša; Lončarić, Sven
Spatio-temporal image segmentation using optical flow and clustering algorithm // Proceedings of the First Int'l Workshop on Image and Signal Processing and Analysis / Lončarić, Sven (ur.).
Zagreb: Sveučilišni računski centar Sveučilišta u Zagrebu (Srce), 2000. str. 63-68 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 50492 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Spatio-temporal image segmentation using optical flow and clustering algorithm

Autori
Galić, Saša ; Lončarić, Sven

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the First Int'l Workshop on Image and Signal Processing and Analysis / Lončarić, Sven - Zagreb : Sveučilišni računski centar Sveučilišta u Zagrebu (Srce), 2000, 63-68

Skup
First Int'l Workshop on Image and Signal Processing and Analysis

Mjesto i datum
Pula, Hrvatska, 13.06.2000. - 16.06.2000

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
spatio-temporal image segmentation; clustering; optical flow; image analysis

Sažetak
Image segmentation is an important and challenging problem in image analysis. Segmentation of moving objects in image sequences is even more difficult and computationally expensive. In this work we propose a technique for spatio-temporal segmentation of medical image sequences based on clustering in the feature vector space. The motivation for spatio-temporal approach is the fact that motion is a useful clue for object segmentation. Two- dimensional feature vector has been used for clustering in the feature space. The first feature is image brightness which reveals the structure of interest in the image. The second feature is the Euclidean norm of the optical flow vector. The optical flow field is computed using a Horn-Schunck algorithm. By clustering in the feature space, it is possible to detect a moving object in the image. Experiments have been conducted using a sequence of ECG-gated magnetic resonance (MR) images of a beating heart. The method is also tested on images with moving background. The experiments have shown encouraging results.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
036024

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Sven Lončarić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Galić, Saša; Lončarić, Sven
Spatio-temporal image segmentation using optical flow and clustering algorithm // Proceedings of the First Int'l Workshop on Image and Signal Processing and Analysis / Lončarić, Sven (ur.).
Zagreb: Sveučilišni računski centar Sveučilišta u Zagrebu (Srce), 2000. str. 63-68 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Galić, S. & Lončarić, S. (2000) Spatio-temporal image segmentation using optical flow and clustering algorithm. U: Lončarić, S. (ur.)Proceedings of the First Int'l Workshop on Image and Signal Processing and Analysis.
@article{article, author = {Gali\'{c}, Sa\v{s}a and Lon\v{c}ari\'{c}, Sven}, editor = {Lon\v{c}ari\'{c}, S.}, year = {2000}, pages = {63-68}, keywords = {spatio-temporal image segmentation, clustering, optical flow, image analysis}, title = {Spatio-temporal image segmentation using optical flow and clustering algorithm}, keyword = {spatio-temporal image segmentation, clustering, optical flow, image analysis}, publisher = {Sveu\v{c}ili\v{s}ni ra\v{c}unski centar Sveu\v{c}ili\v{s}ta u Zagrebu (Srce)}, publisherplace = {Pula, Hrvatska} }
@article{article, author = {Gali\'{c}, Sa\v{s}a and Lon\v{c}ari\'{c}, Sven}, editor = {Lon\v{c}ari\'{c}, S.}, year = {2000}, pages = {63-68}, keywords = {spatio-temporal image segmentation, clustering, optical flow, image analysis}, title = {Spatio-temporal image segmentation using optical flow and clustering algorithm}, keyword = {spatio-temporal image segmentation, clustering, optical flow, image analysis}, publisher = {Sveu\v{c}ili\v{s}ni ra\v{c}unski centar Sveu\v{c}ili\v{s}ta u Zagrebu (Srce)}, publisherplace = {Pula, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font