Pregled bibliografske jedinice broj: 502771
Softverski senzor za procjenu točke filtrabilnosti
Softverski senzor za procjenu točke filtrabilnosti // XXII. Hrvatski skup kemičara i kemijskih inženjera / Tomašić V., Maduna Valkaj K. (ur.).
Zagreb: Hrvatsko društvo kemijskih inženjera i tehnologa (HDKI), 2011. str. 244-244 (poster, domaća recenzija, sažetak, znanstveni)
CROSBI ID: 502771 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Softverski senzor za procjenu točke filtrabilnosti
(Soft sensor for cold filter plugging point estimation)
Autori
Mohler, Ivan ; Ujević Andrijić, Željka ; Bolf, Nenad
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
XXII. Hrvatski skup kemičara i kemijskih inženjera
/ Tomašić V., Maduna Valkaj K. - Zagreb : Hrvatsko društvo kemijskih inženjera i tehnologa (HDKI), 2011, 244-244
ISBN
978-953-6894-42-0
Skup
XXII. Hrvatski skup kemičara i kemijskih inženjera
Mjesto i datum
Zagreb, Hrvatska, 2011
Vrsta sudjelovanja
Poster
Vrsta recenzije
Domaća recenzija
Ključne riječi
softverski senzor; distilacijska kolona; dinamičko modeliranje; točka filtrabilnosti
(soft sensor; crude distillation unit; dynamic modeling; cold filter plugging point)
Sažetak
Soft sensors for quality estimation of diesel fuel in the crude distillation unit (CDU) are developed. Due to the growing fuel quality norms and needs for various quality gradations of diesel fuel, continuous laboratory testing and product quality control are necessary. One of the key diesel fuel properties is cold filter plugging point which is determined only by laboratory assays. On the basis of available continuous measurements of temperatures and flows of appropriate process streams, several soft sensor models for estimating cold filter plugging point have been developed and tested. Experimental data are obtained from the refinery distributed control system (DCS) and include on-line available measured variables and laboratory assays. Data preprocessing included detecting and outlier removal, generating additional data by Multivariate Adaptive Regression Splines (MARSplines) algorithm, offset removal i.e. detrending data and filtering data. Soft sensors are developed using different linear and nonlinear identification methods. From variety of developed models (autoRegressive Moving Average with eXogenous inputs (ARMAX), Output Error (OE), Nonlinear AutoRegressive model with eXogenous inputs (NARX), Hammerstein–Wiener (HW) and neural network models) the best achieved results are shown. Statistical data analysis has been carried out and the results were critically judged. The results of this research indicate that soft sensor models for refinery product quality estimation of diesel fuel can be successfully applied as an alternative for laboratory testing.
Izvorni jezik
Engleski
Znanstvena područja
Kemijsko inženjerstvo
POVEZANOST RADA
Projekti:
125-1251963-1964 - Softverski senzori i analizatori za motrenje i vođenje procesa (Bolf, Nenad, MZOS ) ( CroRIS)
Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb