Pregled bibliografske jedinice broj: 501622
Optimizing configurable parameters of model structure using genetic algorithms
Optimizing configurable parameters of model structure using genetic algorithms // Tedi, 1 (2011), 1; 49-54 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 501622 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Optimizing configurable parameters of model structure using genetic algorithms
Autori
Ujević Andrijić, Željka ; Bolf, Nenad ; Rolich Tomislav
Izvornik
Tedi (1847-9545) 1
(2011), 1;
49-54
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
ARMAX; genetic algorithms; linear and nonlinear identification methods; NARX; optimization; soft sensors
Sažetak
Fractionation product properties of crude distillation unit (CDU) need to be monitored and controlled through feedback mechanism. Due to inability of on-line measurement, soft sensors for product quality estimation are developed. Soft sensors for kerosene distillation end point are developed using linear and nonlinear identification methods. Experimental data are acquired from the refinery distributed control system (DCS) and include on-line available continuously measured variables and laboratory assays. In present work development of AutoRegressive Moving Average with eXogenous inputs (ARMAX) and Nonlinear AutoRegressive model with eXogenous inputs (NARX) are presented. To overcome the problem of selecting the best model set parameters by trial and error procedure, genetic algorithms were used for optimizing the best set of model parameters. Genetic algorithms were approved to be suitable method for optimizing ARMAX and NARX model structure in a way to find the best fits for given parameters range. Based on developed soft sensors it is possible to estimate fuel properties continuously by embedding model in DCS on site as well as applying the methods of inferential control.
Izvorni jezik
Engleski
Znanstvena područja
Kemijsko inženjerstvo, Računarstvo
POVEZANOST RADA
Projekti:
117-0000000-3254 - Evolucijski algoritmi za optimiranje elektromagnetskog opterećenja okoliša (Grundler, Darko, MZOS ) ( CroRIS)
125-1251963-1964 - Softverski senzori i analizatori za motrenje i vođenje procesa (Bolf, Nenad, MZOS ) ( CroRIS)
Ustanove:
Tekstilno-tehnološki fakultet, Zagreb,
Fakultet kemijskog inženjerstva i tehnologije, Zagreb