Pregled bibliografske jedinice broj: 501153
Stereovizijsko praćenje objekata estimiranjem pomoću Kalmanovog filtera
Stereovizijsko praćenje objekata estimiranjem pomoću Kalmanovog filtera, 2011., diplomski rad, diplomski, Fakultet elektrotehnike i računarstva, Zagreb
CROSBI ID: 501153 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Stereovizijsko praćenje objekata estimiranjem pomoću Kalmanovog filtera
(Stereo vision object tracking using Kalman filter estimation)
Autori
Milanković, Lovro
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski
Fakultet
Fakultet elektrotehnike i računarstva
Mjesto
Zagreb
Datum
20.01
Godina
2011
Stranica
56
Mentor
Kovačić, Zdenko
Ključne riječi
robotski vid; praćenje predmeta; segmentacija boja; prošireni Kalmanov ltar; triangulacija; epipolarana geometrija; nearest neighbour
(robot vision; object tracking; color segmentation; EKF; triangulation; epipolar geometry; nearest neighbour)
Sažetak
In the course of this thesis, a vision based tracking solution was developed. The goal of the system was to track moving objects in a robotic environment. Basic projective geometry behind the stereo vision set is presented at the beginning of the thesis. The thesis also addresses the problems caused by vision system noise and provides solutions on how to solve them. The vision system extracts the object information based on color segmentation results. During the development of the tracking algorithm, two approaches were considered as solutions to the tracking problem. The original approach is based on a nearest neighbor algorithm. As this approach did not suffice in performance, the tracking algorithm was modi fied using an extended Kalman filter (EKF). Before the EKF was implemented a series of simulations were performed in Matlab/Simulink. This was needed for the EKF design process. Despite the problem with synchronizing the control system and the vision system, a valid solution was developed. The use of the EKF resulted in better performance than the nearest neighbor approach. The fi nal results showed that the use of EKF tracking algorithm is valid.
Izvorni jezik
Engleski
Znanstvena područja
Temeljne tehničke znanosti
POVEZANOST RADA
Projekti:
036-0363078-3017 - Integrirano upravljanje robotskim sustavima u složenim okruženjima (Kovačić, Zdenko, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Zdenko Kovačić
(mentor)