Pregled bibliografske jedinice broj: 501014
Finite p-groups G with p>2 and d(G)=2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian
Finite p-groups G with p>2 and d(G)=2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian // Glasnik matematički, 45 (2010), 65; 441-452 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 501014 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Finite p-groups G with p>2 and d(G)=2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian
Autori
Zvonimir Janko
Izvornik
Glasnik matematički (0017-095X) 45
(2010), 65;
441-452
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Minimal nonabelian p-groups; A2-groups; metacyclic p-groups; Frattini subgroups; Hall-Petrescu formula; generators and relations.
Sažetak
We give here a complete classification (up to isomotphism) of the title groups (Theorem 8 and Zheorem 9). The corresponding problem for p=2 was solved in /4/.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Napomena
Prof.dr. Zvonimir Janko je istraživač na projektu iz hrvatske dijaspore.
POVEZANOST RADA
Projekti:
083-0000000-3227 - PRIMJENA ALGEBRE U GEOMETRIJI 2
Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split
Profili:
Petar Janko
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus