Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 501014

Finite p-groups G with p>2 and d(G)=2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian


Zvonimir Janko
Finite p-groups G with p>2 and d(G)=2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian // Glasnik matematički, 45 (2010), 65; 441-452 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 501014 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Finite p-groups G with p>2 and d(G)=2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian

Autori
Zvonimir Janko

Izvornik
Glasnik matematički (0017-095X) 45 (2010), 65; 441-452

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Minimal nonabelian p-groups; A2-groups; metacyclic p-groups; Frattini subgroups; Hall-Petrescu formula; generators and relations.

Sažetak
We give here a complete classification (up to isomotphism) of the title groups (Theorem 8 and Zheorem 9). The corresponding problem for p=2 was solved in /4/.

Izvorni jezik
Engleski

Znanstvena područja
Matematika

Napomena
Prof.dr. Zvonimir Janko je istraživač na projektu iz hrvatske dijaspore.



POVEZANOST RADA


Projekti:
083-0000000-3227 - PRIMJENA ALGEBRE U GEOMETRIJI 2

Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split

Profili:

Avatar Url Petar Janko (autor)


Citiraj ovu publikaciju:

Zvonimir Janko
Finite p-groups G with p>2 and d(G)=2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian // Glasnik matematički, 45 (2010), 65; 441-452 (međunarodna recenzija, članak, znanstveni)
Zvonimir Janko (2010) Finite p-groups G with p>2 and d(G)=2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian. Glasnik matematički, 45 (65), 441-452.
@article{article, year = {2010}, pages = {441-452}, keywords = {Minimal nonabelian p-groups, A2-groups, metacyclic p-groups, Frattini subgroups, Hall-Petrescu formula, generators and relations.}, journal = {Glasnik matemati\v{c}ki}, volume = {45}, number = {65}, issn = {0017-095X}, title = {Finite p-groups G with p>2 and d(G)=2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian}, keyword = {Minimal nonabelian p-groups, A2-groups, metacyclic p-groups, Frattini subgroups, Hall-Petrescu formula, generators and relations.} }
@article{article, year = {2010}, pages = {441-452}, keywords = {Minimal nonabelian p-groups, A2-groups, metacyclic p-groups, Frattini subgroups, Hall-Petrescu formula, generators and relations.}, journal = {Glasnik matemati\v{c}ki}, volume = {45}, number = {65}, issn = {0017-095X}, title = {Finite p-groups G with p>2 and d(G)=2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian}, keyword = {Minimal nonabelian p-groups, A2-groups, metacyclic p-groups, Frattini subgroups, Hall-Petrescu formula, generators and relations.} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font