Pregled bibliografske jedinice broj: 500121
Comparison of Bayesian Clustering and Edge Detection Methods for Inferring Boundaries in Landscape Genetics
Comparison of Bayesian Clustering and Edge Detection Methods for Inferring Boundaries in Landscape Genetics // International journal of molecular sciences, 12 (2011), 2; 865-889 doi:10.3390/ijms12020865 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 500121 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Comparison of Bayesian Clustering and Edge Detection Methods for Inferring Boundaries in Landscape Genetics
Autori
Safner, Toni ; Miller, Mark P. ; McRae, Brad H. ; Fortin, Marie-Josée ; Manel, Stéphanie
Izvornik
International journal of molecular sciences (1422-0067) 12
(2011), 2;
865-889
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
landscape genetics; genetic boundaries; spatial Bayesian clustering; edge detection methods
Sažetak
Recently, techniques available for identifying clusters of individuals or boundaries between clusters using genetic data from natural populations have expanded rapidly. Consequently, there is a need to evaluate these different techniques. We used spatially-explicit simulation models to compare three spatial Bayesian clustering programs and two edge detection methods. Spatially-structured populations were simulated where a continuous population was subdivided by barriers. We evaluated the ability of each method to correctly identify boundary locations while varying: (i) time after divergence, (ii) strength of isolation by distance, (iii) level of genetic diversity, and (iv) amount of gene flow across barriers. To further evaluate the methods’ effectiveness to detect genetic clusters in natural populations, we used previously published data on North American pumas and a European shrub. Our results show that with simulated and empirical data, the Bayesian spatial clustering algorithms outperformed direct edge detection methods. All methods incorrectly detected boundaries in the presence of strong patterns of isolation by distance. Based on this finding, we support the application of Bayesian spatial clustering algorithms for boundary detection in empirical datasets, with necessary tests for the influence of isolation by distance.
Izvorni jezik
Engleski
Znanstvena područja
Biologija, Poljoprivreda (agronomija)
POVEZANOST RADA
Projekti:
178-1780691-0688 - Povećanje učinkovitosti istraživanja primjenom naprednih biometrijskih modela (Gunjača, Jerko, MZOS ) ( CroRIS)
Ustanove:
Agronomski fakultet, Zagreb
Profili:
Toni Safner
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE
Uključenost u ostale bibliografske baze podataka::
- CA Search (Chemical Abstracts)
- EMBASE (Excerpta Medica)
- FSTA: Food Science and Technology Abstracts
- INSPEC
- MEDLINE
- Chemistry Citation Index
- Directory of Open Access Journals (DOAJ)
- e-Helvetica (Swiss National Library Archive)
- EBSCOhost
- Google Scholar
- IndexCopernicus
- Journal Citation Report
- Open-J-Gate
- PubMed Central
- Scirus
- SciSearch
- Scopus