Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 498187

Boundary Harnack principle for $\Delta + \Delta^{;; ; ; ; ; \alpha/2};; ; ; ; ; $


Chen, Zhen-Qing; Kim, Panki; Song, Renming; Vondraček, Zoran
Boundary Harnack principle for $\Delta + \Delta^{;; ; ; ; ; \alpha/2};; ; ; ; ; $ // Transactions of the American mathematical society, 364 (2012), 8; 4169-4205 doi:10.1090/S0002-9947-2012-05542-5 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 498187 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Boundary Harnack principle for $\Delta + \Delta^{;; ; ; ; ; \alpha/2};; ; ; ; ; $

Autori
Chen, Zhen-Qing ; Kim, Panki ; Song, Renming ; Vondraček, Zoran

Izvornik
Transactions of the American mathematical society (0002-9947) 364 (2012), 8; 4169-4205

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
boundary Harnack principle ; harmonic function ; sub- and superharmonic function ; fractional Laplacian ; Laplacian ; symmetric $\alpha$-stable process ; Brownian motion ; Ito's formula ; Levy system ; martingales ; exit distribution

Sažetak
For $d\geq 1$ and $\alpha \in (0, 2)$, consider the family of pseudo differential operators $\{; ; ; ; ; ; \Delta+ b \Delta^{; ; ; ; ; ; \alpha/2}; ; ; ; ; ; ; b\in [0, 1]\}; ; ; ; ; ; $ on $\R^d$ that evolves continuously from $\Delta$ to $\Delta + \Delta^{; ; ; ; ; ; \alpha/2}; ; ; ; ; ; $. In this paper, we establish a uniform boundary Harnack principle (BHP) with explicit boundary decay rate for nonnegative functions which are harmonic with respect to $\Delta +b \Delta^{; ; ; ; ; ; \alpha/2}; ; ; ; ; ; $ (or equivalently, the sum of a Brownian motion and an independent symmetric $\alpha$-stable process with constant multiple $b^{; ; ; ; ; ; 1/\alpha}; ; ; ; ; ; $) in $C^{; ; ; ; ; ; 1, 1}; ; ; ; ; ; $ open sets. Here a ``uniform" BHP means that the comparing constant in the BHP is independent of $b\in [0, 1]$. Along the way, a uniform Carleson type estimate is established for nonnegative functions which are harmonic with respect to $\Delta + b \Delta^{; ; ; ; ; ; \alpha/2}; ; ; ; ; ; $ in Lipschitz open sets. Our method employs a combination of probabilistic and analytic techniques.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
MZOS-037-0372790-2801 - Slučajni procesi sa skokovima (Vondraček, Zoran, MZOS ) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Zoran Vondraček (autor)

Poveznice na cjeloviti tekst rada:

doi www.ams.org

Citiraj ovu publikaciju:

Chen, Zhen-Qing; Kim, Panki; Song, Renming; Vondraček, Zoran
Boundary Harnack principle for $\Delta + \Delta^{;; ; ; ; ; \alpha/2};; ; ; ; ; $ // Transactions of the American mathematical society, 364 (2012), 8; 4169-4205 doi:10.1090/S0002-9947-2012-05542-5 (međunarodna recenzija, članak, znanstveni)
Chen, Z., Kim, P., Song, R. & Vondraček, Z. (2012) Boundary Harnack principle for $\Delta + \Delta^{;; ; ; ; ; \alpha/2};; ; ; ; ; $. Transactions of the American mathematical society, 364 (8), 4169-4205 doi:10.1090/S0002-9947-2012-05542-5.
@article{article, author = {Chen, Zhen-Qing and Kim, Panki and Song, Renming and Vondra\v{c}ek, Zoran}, year = {2012}, pages = {4169-4205}, DOI = {10.1090/S0002-9947-2012-05542-5}, keywords = {boundary Harnack principle, harmonic function, sub- and superharmonic function, fractional Laplacian, Laplacian, symmetric $\alpha$-stable process, Brownian motion, Ito's formula, Levy system, martingales, exit distribution}, journal = {Transactions of the American mathematical society}, doi = {10.1090/S0002-9947-2012-05542-5}, volume = {364}, number = {8}, issn = {0002-9947}, title = {Boundary Harnack principle for $\Delta + \Delta\^{}{;; ; ; ; ; \alpha/2};; ; ; ; ; $}, keyword = {boundary Harnack principle, harmonic function, sub- and superharmonic function, fractional Laplacian, Laplacian, symmetric $\alpha$-stable process, Brownian motion, Ito's formula, Levy system, martingales, exit distribution} }
@article{article, author = {Chen, Zhen-Qing and Kim, Panki and Song, Renming and Vondra\v{c}ek, Zoran}, year = {2012}, pages = {4169-4205}, DOI = {10.1090/S0002-9947-2012-05542-5}, keywords = {boundary Harnack principle, harmonic function, sub- and superharmonic function, fractional Laplacian, Laplacian, symmetric $\alpha$-stable process, Brownian motion, Ito's formula, Levy system, martingales, exit distribution}, journal = {Transactions of the American mathematical society}, doi = {10.1090/S0002-9947-2012-05542-5}, volume = {364}, number = {8}, issn = {0002-9947}, title = {Boundary Harnack principle for $\Delta + \Delta\^{}{;; ; ; ; ; \alpha/2};; ; ; ; ; $}, keyword = {boundary Harnack principle, harmonic function, sub- and superharmonic function, fractional Laplacian, Laplacian, symmetric $\alpha$-stable process, Brownian motion, Ito's formula, Levy system, martingales, exit distribution} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font