Pregled bibliografske jedinice broj: 495875
Elementary operators and subhomogeneous C*-algebras
Elementary operators and subhomogeneous C*-algebras // Proceedings of the edinburgh mathematical society, 54 (2011), 01; 99-111 doi:10.1017/S0013091509001114 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 495875 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Elementary operators and subhomogeneous C*-algebras
Autori
Gogić, Ilja
Izvornik
Proceedings of the edinburgh mathematical society (0013-0915) 54
(2011), 01;
99-111
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
C*-algebra ; subhomogeneous ; elementary operators
Sažetak
Let A be a C*-algebra and let $\Theta_A$ be the canonical contraction form the Haagerup tensor product of M(A) with itself to the space of completely bounded maps on A. In this paper we consider the following conditions on A: (a) A is a finitely generated module over the centre of M(A) ; (b) the image of ΘA is equal to the set E(A) of all elementary operators on A ; and (c) the lengths of elementary operators on A are uniformly bounded. We show that A satisfies (a) if and only if it is a finite direct sum of unital homogeneous C*-algebras. We also show that if a separable A satisfies (b) or (c), then A is necessarily subhomogeneous and the C*-bundles corresponding to the homogeneous subquotients of A must be of finite type.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
MZOS-037-0372784-2753 - Hilbertovi C*-moduli (Guljaš, Boris, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Ilja Gogić
(autor)
Poveznice na cjeloviti tekst rada:
doi www.cambridge.org journals.cambridge.org journals.cambridge.orgCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts