Pregled bibliografske jedinice broj: 495869
Elementary operators and subhomogeneous C*-algebras (II)
Elementary operators and subhomogeneous C*-algebras (II) // Banach journal of mathematical analysis, 5 (2011), 1; 181-192 doi:10.15352/bjma/1313362989 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 495869 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Elementary operators and subhomogeneous C*-algebras (II)
Autori
Gogić, Ilja
Izvornik
Banach journal of mathematical analysis (2662-2033) 5
(2011), 1;
181-192
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
C*-algebra ; subhomogeneous ; elementary operator ; 2-primal ideal ; Glimm ideal
Sažetak
Let A be a separable unital C*-algebra and let $\theta_A$ be the canonical contraction from the Haagerup tensor product of A with itself to the space of completely bounded maps on A. In our previous paper we showed that if A satisfies (a) the lengths of elementary operators on A are uniformly bounded, or (b) the image of $\theta_A$ equals the set of all elementary operators on A, then A is necessarily SFT (subhomogeneous of finite type). In this paper we extend this result ; we show that if A satisfies (a) or (b) then the codimensions of 2-primal ideals of A are also finite and uniformly bounded. Using this, we provide an example of a unital separable SFT algebra which does not satisfy (a) nor (b). However, if the primitive spectrum of a unital SFT algebra A is Hausdorff, we show that such an A satisfies (a) and (b).
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
MZOS-037-0372784-2753 - Hilbertovi C*-moduli (Guljaš, Boris, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Ilja Gogić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts