Pregled bibliografske jedinice broj: 493201
Feature Selection for Automatic Breast Density Classification
Feature Selection for Automatic Breast Density Classification // Proceedings of the 52nd International Symposium ELMAR-2010 / Grgić, Mislav ; Božek, Jelena ; Grgić, Sonja (ur.).
Zagreb: Hrvatsko društvo Elektronika u pomorstvu (ELMAR), 2010. str. 9-16 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 493201 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Feature Selection for Automatic Breast Density Classification
Autori
Muštra, Mario ; Grgić, Mislav ; Delač, Krešimir
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 52nd International Symposium ELMAR-2010
/ Grgić, Mislav ; Božek, Jelena ; Grgić, Sonja - Zagreb : Hrvatsko društvo Elektronika u pomorstvu (ELMAR), 2010, 9-16
ISBN
978-953-7044-11-4
Skup
International Symposium ELMAR
Mjesto i datum
Zadar, Hrvatska, 15.09.2010. - 17.09.2010
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Breast Density; Feature Selection; Haralick and Soh Features; Classification
Sažetak
Mammography is probably the best method for early detection of abnormalities in the breast tissue. Higher breast tissue densities significantly reduce the overall detection sensitivity and can lead to false negative results. In automatic detection algorithms, knowledge about breast density can also be useful for setting an appropriate threshold. It is impossible to produce satisfactory classification results by knowledge of overall intensity because exposure and breast volume are different. Because of that we observe breast density as a texture classification problem. In this paper we propose feature selection process based on Haralick and Soh feature set with optimization for k-nearest neighbor classifier. Feature selection was done by individual feature ranking, using linear forward selection and finally using wrappers. The best feature selection results were obtained using wrappers. The improvement on overall classification is 6.8% in comparison to the classification without feature selection on the same dataset.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
036-0361630-1635 - Upravljanje kvalitetom slike u radiodifuziji digitalnog videosignala (Grgić, Sonja, MZO ) ( CroRIS)
036-0982560-1643 - Inteligentno određivanje značajki slike u sustavima za otkrivanje znanja (Grgić, Mislav, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb