Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 492715

Review of adaptation mechanisms for data-driven soft sensors


Kadlec, Petr; Grbić, Ratko; Gabrys, Bogdan
Review of adaptation mechanisms for data-driven soft sensors // Computers & chemical engineering, 35 (2011), 1; 1-24 doi:10.1016/j.compchemeng.2010.07.034 (međunarodna recenzija, pregledni rad, znanstveni)


CROSBI ID: 492715 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Review of adaptation mechanisms for data-driven soft sensors

Autori
Kadlec, Petr ; Grbić, Ratko ; Gabrys, Bogdan

Izvornik
Computers & chemical engineering (0098-1354) 35 (2011), 1; 1-24

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, pregledni rad, znanstveni

Ključne riječi
data-driven soft sensing; process industry; adaptation; incremental learning; online prediction; process monitoring; soft sensor case studies; review

Sažetak
In this article, we review and discuss algorithms for adaptive data-driven soft sensing. In order to be able to provide a comprehensive overview of the adaptation techniques, adaptive soft sensing methods are reviewed from the perspective of machine learning theory for adaptive learning systems. In particular, the concept drift theory is exploited to classify the algorithms into three different types, which are: (i) moving windows techniques ; (ii) recursive adaptation techniques ; and (iii) ensemble-based methods. The most significant algorithms are described in some detail and critically reviewed in this work. We also provide a comprehensive list of publications where adaptive soft sensors were proposed and applied to practical problems. Furthermore in order to enable the comparison of different methods to standard soft sensor applications, a list of publicly available data sets for the development of data-driven soft sensors is presented.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
165-0361621-2000 - Distribuirano računalno upravljanje u transportu i industrijskim pogonima (Hocenski, Željko, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Profili:

Avatar Url Ratko Grbić (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com www.sciencedirect.com

Citiraj ovu publikaciju:

Kadlec, Petr; Grbić, Ratko; Gabrys, Bogdan
Review of adaptation mechanisms for data-driven soft sensors // Computers & chemical engineering, 35 (2011), 1; 1-24 doi:10.1016/j.compchemeng.2010.07.034 (međunarodna recenzija, pregledni rad, znanstveni)
Kadlec, P., Grbić, R. & Gabrys, B. (2011) Review of adaptation mechanisms for data-driven soft sensors. Computers & chemical engineering, 35 (1), 1-24 doi:10.1016/j.compchemeng.2010.07.034.
@article{article, author = {Kadlec, Petr and Grbi\'{c}, Ratko and Gabrys, Bogdan}, year = {2011}, pages = {1-24}, DOI = {10.1016/j.compchemeng.2010.07.034}, keywords = {data-driven soft sensing, process industry, adaptation, incremental learning, online prediction, process monitoring, soft sensor case studies, review}, journal = {Computers and chemical engineering}, doi = {10.1016/j.compchemeng.2010.07.034}, volume = {35}, number = {1}, issn = {0098-1354}, title = {Review of adaptation mechanisms for data-driven soft sensors}, keyword = {data-driven soft sensing, process industry, adaptation, incremental learning, online prediction, process monitoring, soft sensor case studies, review} }
@article{article, author = {Kadlec, Petr and Grbi\'{c}, Ratko and Gabrys, Bogdan}, year = {2011}, pages = {1-24}, DOI = {10.1016/j.compchemeng.2010.07.034}, keywords = {data-driven soft sensing, process industry, adaptation, incremental learning, online prediction, process monitoring, soft sensor case studies, review}, journal = {Computers and chemical engineering}, doi = {10.1016/j.compchemeng.2010.07.034}, volume = {35}, number = {1}, issn = {0098-1354}, title = {Review of adaptation mechanisms for data-driven soft sensors}, keyword = {data-driven soft sensing, process industry, adaptation, incremental learning, online prediction, process monitoring, soft sensor case studies, review} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font