Pregled bibliografske jedinice broj: 49181
On spectral condition of J-Hermitian operators
On spectral condition of J-Hermitian operators // Glasnik matematički Memorial Issue in Honor of Branko Najman, 35(55) (2000), 1; 3-24 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 49181 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On spectral condition of J-Hermitian operators
Autori
Veselić, Krešimir ; Slapničar, Ivan
Izvornik
Glasnik matematički
Memorial Issue in Honor of Branko Najman 35(55)
(2000), 1;
3-24
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Hermitian operator; spectral condition number; Hilbert space;
Sažetak
The spectral condition of a matrix $H$ is the infimum of the condition numbers
$\kappa(Z) = \|Z\|\|Z^{-1}\|$, taken over all $Z$
such that $Z^{-1}HZ$ is diagonal.
This number controls the sensitivity of the
spectrum of $H$ under perturbations.
A matrix is called $J$-Hermitian if $H^*=JHJ$ for
some $J=J^*=J^{-1}$. When diagonalizing
$J$-Hermitian matrices it is natural to look at
$J$-unitary matrices $Z$, that is, those that
satisfy $Z^*JZ=J$. Our first result is: if there
is such $J$-unitary $Z$, then the infimum above
is taken on $J$-unitary $Z$, that is, the $J$
unitary diagonalization is the most stable of all.
For the special case when $J$-Hermitian matrix
has definite spectrum, we give various upper
bounds for the spectral condition, and show that
all $J$-unitaries $Z$ which diagonalize such
matrix have the same condition number. Our
estimates are given in the spectral norm and the
Hilbert--Schmidt norm. Our results are, in fact,
formulated and proved in a general Hilbert space
(with the notion of ``diagonalization''
appropriately generalized) and are applicable
even to unbounded operators. We apply our theory
to the Klein--Gordon operator thus improving a
previously known bound.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037012
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews