Pregled bibliografske jedinice broj: 490724
The coarse shape groups
The coarse shape groups // 2010 International conference on Topology and its Applications
Nafpaktos, 2010. str. 47-49 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 490724 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The coarse shape groups
Autori
Koceić Bilan, Nikola
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
2010 International conference on Topology and its Applications
Mjesto i datum
Náfpaktos, Grčka, 26.06.2010. - 30.06.2010
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
shape; coarse shape; shape group; hmotopy pro-group
Sažetak
Coarse shape isomorphisms preserve some important topological invariants as connectedness, (strong) movability, shape dimension and stability. There are also several new algebraic coarse shape invariants. In this talk we introduce a new algebraic coarse shape invariant which is an invariant of shape and homotopy, as well. For every pointed space (X, ⋆) and for every k∈N₀, the coarse shape group π_{; ; k}; ; ^{; ; ∗}; ; (X, ⋆), having the standard shape group π_{; ; k}; ; (X, ⋆) for its subgroup, is defined. Furthermore, a functor π_{; ; k}; ; ^{; ; ∗}; ; :Sh_{; ; ⋆}; ; ^{; ; ∗}; ; →Grp is constructed. The coarse shape and shape groups already differ on the class of polyhedra. An explicit formula for computing coarse shape groups of polyhedra is given. The coarse shape groups give us more information than the shape groups. Generally, π_{; ; k}; ; (X, ⋆)=0 does not imply π_{; ; k}; ; ^{; ; ∗}; ; (X, ⋆)=0 (e.g. for solenoids), but from pro-π_{; ; k}; ; (X, ⋆)=0 follows π_{; ; k}; ; ^{; ; ∗}; ; (X, ⋆)=0. Moreover, for pointed metric compacta (X, ⋆), the n-shape connectedness is characterized by π_{; ; k}; ; ^{; ; ∗}; ; (X, ⋆)=0, for every k≤n.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
177-0372791-0886 - Grubi oblik i klasifikacija natkrivanja (Matijević, Vlasta, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Split
Profili:
Nikola Koceić-Bilan
(autor)