Pregled bibliografske jedinice broj: 489464
Image Registration and Atlas-based Segmentation of Cardiac Outflow Velocity Profiles
Image Registration and Atlas-based Segmentation of Cardiac Outflow Velocity Profiles // Computer methods and programs in biomedicine, 106 (2012), 3; 188-200 doi:10.1016/j.cmpb.2010.11.001 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 489464 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Image Registration and Atlas-based Segmentation of Cardiac Outflow Velocity Profiles
Autori
Kalinić, Hrvoje ; Lončarić, Sven ; Čikeš, Maja ; Miličić, Davor ; Bijnens, Bart
Izvornik
Computer methods and programs in biomedicine (0169-2607) 106
(2012), 3;
188-200
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Doppler ultrasound imaging; cardiac outflow velocity profile; image registration; atlas-based segmentation; segmentation propagation
Sažetak
Cardiovascular disease is the leading cause of death worldwide and for this reason computer-based diagnosis of cardiac diseases is a very important task. In this article, a method for segmentation of aortic outflow velocity profiles from cardiac Doppler ultrasound images is presented. The proposed method is based on the statistical image atlas derived from ultrasound images of healthy volunteers. The ultrasound image segmentation is done by registration of the input image to the atlas, followed by a propagation of the segmentation result from the atlas onto the input image. In the registration process, the normalized mutual information is used as an image similarity measure, while optimization is preformed using a multiresolution gradient ascent method. The registration method is evaluated using an in-silico phantom, real data from 30 volunteers, and an inverse consistency test. The segmentation method is evaluated using 59 images from healthy volunteers and 89 images from patients, and using cardiac parameters extracted from the segmented image. Experimental validation is conducted using a set of healthy volunteers and patients and has shown excellent results. Cardiac parameter segmentation evaluation showed that the variability of the automated segmentation relative to the manual is comparable to the intra-observer variability. The proposed method is useful for computed aided diagnosis and extraction of cardiac parameters.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Kliničke medicinske znanosti
POVEZANOST RADA
Projekti:
036-0362214-1989 - Inteligentne metode obrade i analize slika (Lončarić, Sven, MZO ) ( CroRIS)
108-1081875-1991 - Doppler miokarda u ranom otkrivanju i praćenju kardiovaskularnih bolesti (Šeparović-Hanževački, Jadranka, MZOS ) ( CroRIS)
108-1081875-1993 - Otpornost na antitrombocitne lijekove u ishemijskoj bolesti srca i mozga (Miličić, Davor, MZOS ) ( CroRIS)
108-1081875-1927 - Zatajivanje srca u Hrvatskoj (Čikeš, Ivo, MZOS ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Medicinski fakultet, Zagreb,
Sveučilište u Zagrebu
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada doi
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE