Pregled bibliografske jedinice broj: 486885
Predicting Thermal Conductivity of Steels Using Artificial Neural Networks
Predicting Thermal Conductivity of Steels Using Artificial Neural Networks // Transactions of FAMENA, 34 (2010), 3; 11-20 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 486885 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Predicting Thermal Conductivity of Steels Using Artificial Neural Networks
Autori
Žmak, Irena ; Filetin, Tomislav
Izvornik
Transactions of FAMENA (1333-1124) 34
(2010), 3;
11-20
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
thermal conductivity; steels; property prediction; artificial neural networks
Sažetak
The data on the physical properties of steels which depend on temperature are needed for the calculation and simulation of heating and cooling processes. A method for predicting thermal conductivity of steels at elevated temperatures (up to 700 °C) from the known steel chemical composition has been developed, and the results obtained by the simulation are given. A static multi-layer feed-forward artificial neural network with the back propagation training function and Levenberg-Marquardt optimization was used to predict the coefficient of thermal conductivity of steels. In order to prevent the over fitting the early stopping method was applied. The following groups of steel were included in the model: structural steels, hotwork tool steels, high-speed steels, stainless steels, heat resistant steels austenitic steels for elevated temperatures, and cobalt alloyed steels and alloys for elevated temperatures. The mean absolute error in predicting thermal conductivity and the standard deviation were found to be very acceptable.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Projekti:
120-1201780-1779 - Modeliranje svojstava materijala i parametara procesa (Filetin, Tomislav, MZOS ) ( CroRIS)
Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Geobase
- Science Citation Index Expanded
- Journal of Citation Reports/Science Edition
- GEOBASE
- Water Resources Abstracts
- CSA Engineering Research Database
- Scopus