Pregled bibliografske jedinice broj: 486108
Flank wear prediction in end milling using regression analysis and radial basis function neural networks
Flank wear prediction in end milling using regression analysis and radial basis function neural networks // IN-TECH 2010 / Jan Kudlaček, Branimir Barišić, Xavier Velay, Kazuhiro Ohkura (ur.).
Prag: Tisk AS s.r.o., Jaromer, 2010. str. 250-254 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 486108 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Flank wear prediction in end milling using regression analysis and radial basis function neural networks
Autori
Bajić, Dražen ; Jozić, Sonja ; Celent Luka
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
IN-TECH 2010
/ Jan Kudlaček, Branimir Barišić, Xavier Velay, Kazuhiro Ohkura - Prag : Tisk AS s.r.o., Jaromer, 2010, 250-254
ISBN
978-80-904502-2-6
Skup
International Conference on Innovative Technologies
Mjesto i datum
Prag, Češka Republika, 14.09.2010. - 16.09.2010
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
flank wear; end milling; regression analysis; radial basis function neural network
Sažetak
End milling is commonly used machining process for the manufacturing of dies and molds, as well as numerous very high precision machine components. Flank wear develops due to abrasion of the cutting tool edge against the machined workpiece surface and is measured by the average width of wear land on the primary clearance face. This study presents the prediction of flank wear in end milling process. Machining parameters (cutting speed, vc, feed per tooth, ft, radial depth of cut, ae) and machining time, t, have been used as input variables. Since the flank wear has an influence on surface quality, the surface roughness has also been observed in this study. Regression analysis and radial basis function neural networks have been applied to data experimentally determined by means of the design of experiment and the effective mathematical models have been developed. The results obtained by the models have been compared. Both models have the relative prediction error below 7.66 %. The best prediction of flank wear and surface roughness shows radial basis function neural network model with the average relative prediction error of 4.48 % and 4.47 %, respectively.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Projekti:
023-0692976-1742 - Istraživanje visokobrzinske obrade materijala (Bajić, Dražen, MZOS ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split