Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 483825

Equivariant L-types and lattice coverings


Dutour Sikirić, Mathieu; Schuermann, Achill; Vallentin, Frank
Equivariant L-types and lattice coverings // Optimization and Applications Seminar, ETH Zurich
Zürich, Švicarska, 2006. (predavanje, međunarodna recenzija, pp prezentacija, znanstveni)


CROSBI ID: 483825 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Equivariant L-types and lattice coverings

Autori
Dutour Sikirić, Mathieu ; Schuermann, Achill ; Vallentin, Frank

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni

Izvornik
Optimization and Applications Seminar, ETH Zurich / - , 2006

Skup
Optimization and Applications Seminar

Mjesto i datum
Zürich, Švicarska, 20.06.2006

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Delaunay polytopes; L-types; covering problem

Sažetak
A lattice is a rank n subgroup of R^n. A covering of R^n is a family of balls of equal radius such that any point belongs to at least one ball. The covering density is the average number of balls to which points of R^n belongs to. Our main purpose is to minimize the covering density in the lattice case: coverings defined by balls whose center belong to a lattice. To any lattice L, one associates a Gram matrix G by taking a basis of the lattice. This is the key idea of Lattice Theory allowing to use analytic tools. A Delaunay polytope of a lattice is the convex hull of points lying on an empty sphere. They form a normal tesselation of R^n (dual to Voronoi tiling). The covering density is expressed in terms of maximum radius of Delaunay polytopes and determinant of the Gram matrix. A L-type is defined as the set of matrices having the same Delaunay tesselation. This parameter space, together with semidefinite programming allows to solve the lattice covering problem, provided that one knows all the L-type domain. In practice, this is possible only up to dimension 5. We will present the generalization of L-type theory to lattices having a fixed symmetry group. This will allow us to find best known covering in dimension 9-15.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Mathieu Dutour Sikirić (autor)

Citiraj ovu publikaciju:

Dutour Sikirić, Mathieu; Schuermann, Achill; Vallentin, Frank
Equivariant L-types and lattice coverings // Optimization and Applications Seminar, ETH Zurich
Zürich, Švicarska, 2006. (predavanje, međunarodna recenzija, pp prezentacija, znanstveni)
Dutour Sikirić, M., Schuermann, A. & Vallentin, F. (2006) Equivariant L-types and lattice coverings. U: Optimization and Applications Seminar, ETH Zurich.
@article{article, author = {Dutour Sikiri\'{c}, Mathieu and Schuermann, Achill and Vallentin, Frank}, year = {2006}, keywords = {Delaunay polytopes, L-types, covering problem}, title = {Equivariant L-types and lattice coverings}, keyword = {Delaunay polytopes, L-types, covering problem}, publisherplace = {Z\"{u}rich, \v{S}vicarska} }
@article{article, author = {Dutour Sikiri\'{c}, Mathieu and Schuermann, Achill and Vallentin, Frank}, year = {2006}, keywords = {Delaunay polytopes, L-types, covering problem}, title = {Equivariant L-types and lattice coverings}, keyword = {Delaunay polytopes, L-types, covering problem}, publisherplace = {Z\"{u}rich, \v{S}vicarska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font