Pregled bibliografske jedinice broj: 483809
Computing Delaunay polytopes of lattices
Computing Delaunay polytopes of lattices // Seminar of computational homology and applications, National university of Ireland, Galway
Galway, Irska, 2007. (predavanje, međunarodna recenzija, pp prezentacija, znanstveni)
CROSBI ID: 483809 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Computing Delaunay polytopes of lattices
Autori
Dutour Sikirić, Mathieu
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni
Izvornik
Seminar of computational homology and applications, National university of Ireland, Galway
/ - , 2007
Skup
Seminar of computational homology and applications, National university of Ireland, Galway
Mjesto i datum
Galway, Irska, 08.10.2007
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Delaunay polytope; adjacency method; crystallographics group
Sažetak
A lattice L is a rank n subgroup of R^n. A Delaunay polytope of L is the convex hull of points lying on an empty sphere. They form a normal tesselation of R^n. A dual tesselation is obtained by taking the Voronoi polytopes, i.e. the set polytopes whose closest point is a given element of the lattice. The covering density of L and many other invariants are encoded in those tesselations. We will give them for the root lattices and several other examples. We will expose systematically the computational techniques involved in the determination of the Delaunay polytopes in large dimension. Then, we will expose a methodology for the computation of integrals over the Voronoi polytope.
Izvorni jezik
Engleski
Znanstvena područja
Matematika