Pregled bibliografske jedinice broj: 483799
Torus cube packings
Torus cube packings // Seminar of computational homology and applications, National university of Ireland, Galway
Galway, Irska, 2007. (predavanje, međunarodna recenzija, pp prezentacija, znanstveni)
CROSBI ID: 483799 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Torus cube packings
Autori
Itoh, Yoshiaki ; Dutour Sikirić, Mathieu
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni
Izvornik
Seminar of computational homology and applications, National university of Ireland, Galway
/ - , 2007
Skup
Seminar of computational homology and applications, National university of Ireland, Galway
Mjesto i datum
Galway, Irska, 17.09.2007
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
cube packing; second moment; holes; enumeration
Sažetak
We consider sequential random packing of cubes z+ [0, 1]^n with z in (1/N)Z^n into the cube [0, 2]^n and the torus R^n/(2\ZZ^n) as N goes to infinity. In the cube case [0, 2]^n as N goes to infinity the random cube packings thus obtained are reduced to a single cube with probability 1-O(1/N). In the torus case the situation is different: for n=1 or 2, sequential random cube packing yields cube tilings, but for n>=3 with strictly positive probability, one obtains non-extensible cube packings. So, we introduce the notion of combinatorial cube packing, which instead of depending on N depend on some parameters. We use use them to derive an expansion of the packing density in powers of 1/N. The explicit computation is done in the cube case. In the torus case, the situation is more complicate and we restrict ourselves to the case N goes to infinity of strictly positive probability. We prove the following results for torus combinatorial cube packings: * We give a general Cartesian product construction. * We prove that the number of parameters is at least n(n+1)/2 and we conjecture it to be at most 2^n-1. * We prove that cube packings with at least 2^n-3 cubes are extensible. * We find the minimal number of cubes in non- extensible cube packings for n odd and n<=6.
Izvorni jezik
Engleski
Znanstvena područja
Matematika