Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 483776

Covering maxima and Delaunay polytopes in lattices


Dutour Sikirić, Mathieu; Shuermann, Achill; Vallentin, Frank
Covering maxima and Delaunay polytopes in lattices // Seminar za kombinatornu i diskretnu matematiku, Matematicki odsjek
Zagreb, Hrvatska, 2010. (predavanje, domaća recenzija, pp prezentacija, znanstveni)


CROSBI ID: 483776 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Covering maxima and Delaunay polytopes in lattices

Autori
Dutour Sikirić, Mathieu ; Shuermann, Achill ; Vallentin, Frank

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni

Izvornik
Seminar za kombinatornu i diskretnu matematiku, Matematicki odsjek / - , 2010

Skup
Seminar za kombinatornu i diskretnu matematiku, Matematicki odsjek

Mjesto i datum
Zagreb, Hrvatska, 18.03.2010

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Domaća recenzija

Ključne riječi
Delaunay polytope; eutaxy; perfection; enumeration

Sažetak
A family of balls in Euclidean space is called a packing if for any two balls B and B' their interior do not self-intersect. It is called a covering if every point belong to at least one ball. We focus here on packings and coverings for which the calls are of the form x + B(0, R) with x belonging to a lattice L. If L is fixed then we adjust the value of R to a value R0 to find the best packing. Alternatively we can adjust the value of R to a value R1 to find the best covering. This allow us to define the packing density pack(L) and covering density cov(L) of L. The geometry of the function pack on the space of lattices has been elucidated by Minkovski, Voronoi and Ash. They showed that the function pack has no local minimum, that it is a Morse function and they give a characterization of the local maximum in terms of the algebraic notions of perfection and eutaxy. The covering function cov is much more complex. It has local minimum and local maximum and it is not a Morse function. We also characterize the local maximum of the covering density in terms of the corresponding notions of perfection and eutaxy this time for Delaunay polytope.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Mathieu Dutour Sikirić (autor)


Citiraj ovu publikaciju:

Dutour Sikirić, Mathieu; Shuermann, Achill; Vallentin, Frank
Covering maxima and Delaunay polytopes in lattices // Seminar za kombinatornu i diskretnu matematiku, Matematicki odsjek
Zagreb, Hrvatska, 2010. (predavanje, domaća recenzija, pp prezentacija, znanstveni)
Dutour Sikirić, M., Shuermann, A. & Vallentin, F. (2010) Covering maxima and Delaunay polytopes in lattices. U: Seminar za kombinatornu i diskretnu matematiku, Matematicki odsjek.
@article{article, author = {Dutour Sikiri\'{c}, Mathieu and Shuermann, Achill and Vallentin, Frank}, year = {2010}, keywords = {Delaunay polytope, eutaxy, perfection, enumeration}, title = {Covering maxima and Delaunay polytopes in lattices}, keyword = {Delaunay polytope, eutaxy, perfection, enumeration}, publisherplace = {Zagreb, Hrvatska} }
@article{article, author = {Dutour Sikiri\'{c}, Mathieu and Shuermann, Achill and Vallentin, Frank}, year = {2010}, keywords = {Delaunay polytope, eutaxy, perfection, enumeration}, title = {Covering maxima and Delaunay polytopes in lattices}, keyword = {Delaunay polytope, eutaxy, perfection, enumeration}, publisherplace = {Zagreb, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font