Pregled bibliografske jedinice broj: 483766
Perfect lattices and periodic sets
Perfect lattices and periodic sets // BIRS workshop on Discrete geometry and topology in low dimensions
Banff, Kanada, 2007. (plenarno, međunarodna recenzija, pp prezentacija, znanstveni)
CROSBI ID: 483766 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Perfect lattices and periodic sets
Autori
Schuermann, Achill ; Dutour Sikirić, Mathieu ; Vallentin, Frank
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni
Izvornik
BIRS workshop on Discrete geometry and topology in low dimensions
/ - , 2007
Skup
BIRS workshop on Discrete geometry and topology in low dimensions
Mjesto i datum
Banff, Kanada, 01.04.2007. - 06.04.2007
Vrsta sudjelovanja
Plenarno
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
perfect form; polyhedral cone; enumeration
Sažetak
A real, positive definite quadratic form in n variables is called perfect, if it is uniquely determined by its arithmetical minimum and the integral vectors representing it. Due to a classical theorem of Voronoi, for every n, there exist only finitely many perfect forms up to arithmetical equivalence. In this talk we explain how to classify perfect forms using polyhedral computations and how to obtain a reduction domain from such a classification. We discuss some applications and generalization.
Izvorni jezik
Engleski
Znanstvena područja
Matematika