Pregled bibliografske jedinice broj: 483763
Enumerating perfect lattices
Enumerating perfect lattices // International Conference on the Algebraic and Arithmetic Theory of Quadratic Forms
Talca, Čile, 2007. (plenarno, međunarodna recenzija, pp prezentacija, znanstveni)
CROSBI ID: 483763 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Enumerating perfect lattices
Autori
Schurmann, Achill ; Dutour Sikirić, Mathieu ; Vallentin, Frank
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni
Izvornik
International Conference on the Algebraic and Arithmetic Theory of Quadratic Forms
/ - , 2007
Skup
International Conference on the Algebraic and Arithmetic Theory of Quadratic Forms
Mjesto i datum
Talca, Čile, 13.12.2007. - 19.12.2007
Vrsta sudjelovanja
Plenarno
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
perfect form; polyhedral cone; enumeration
Sažetak
A real, positive definite quadratic form in n variables is called perfect, if it is uniquely determined by its arithmetical minimum and the integral vectors representing it. Due to a classical theorem of Voronoi, for every n, there exist only finitely many perfect forms up to arithmetical equivalence. In this talk we explain how to classify perfect forms using polyhedral computations and how to obtain a reduction domain from such a classification. We discuss some applications and generalization.
Izvorni jezik
Engleski
Znanstvena područja
Matematika